

CSE143 Lecture Questions for Wednesday, 4/14/21

Question Answer

What’s the relationship between queues and linkedlists?

Are they the same thing?

Ok thank you. So we’ve already worked with linked

lists in the past week before these lectures specifically

about linked lists?

I see, so last week was client side and now we’re

working on implementation side?

Thanks!

In the Java collections framework the

LinkedList<E> class implements the

Queue<E> interface, so they aren’t the same

thing.

For the Guitar Hero program you are using

the built-in LinkedList<E> class and we

were using it last week. But now we’re

talking about how to implement one and

we’re creating our own version called

LinkedIntList.

Yes.

What happens if you make ListNode private in the

ListNode class and public in the LinkedIntList class

(basically the reverse)?

So does it matter more that in at least one class, the

field is private? Ok, thanks.

Then you would be giving the client of

LinkedIntList the ability to reach in and

manipulate the list directly, but it won’t

matter because nobody can access the fields

in the node anyway.

No. You want it the way I’ve shown with

the private field in LinkedIntList and public

fields in ListNode. The alternative for

ListNode would be to include getters and

setters and make the fields private.

For a class like ListNode, would proper commenting

still be important? If the only client is yourself.

A little more lax, then. Thanks!

The commenting rules for private methods

and for a node class are somewhat different.

For example, you can talk about

implementation details. But they should

still be commented.

In the last example of class today does the front list

change to include the 17? Or is it just the current list

that changes to include the new value?

I guess I am kind of confused if front and current are

two different lists.

That makes more sense. Thank you.

I’m not sure what you’re asking about. In

the last minute of class I showed the

complete code that uses an if/else to

distinguish between changing front when

the initial list is empty versus the loop

solution that finds the last node and attaches

the new node to that.

The field called front keeps a reference to

the first node in the list that we’re working

with. The variable current is assigned to

point to the same node initially, which

means that it also is referring to the list

we’re working with. They aren’t different

lists, they’re two different references to the

same list.

When will assignment 1 be graded? It is being graded now. You’ll get it

Thursday before homework 2 is due.

Is there a data structure like a linked list but with nodes

that point both forward and backward? Would that be

more useful/less useful in any situation?

What about a circular or looping linked list that points

back to its head?

Oh okay. Thank you! My TA said it wasn’t really

useful so I just wanted to clarify.

That is a variation of a linked list known as

a doubly-linked list. It is a common data

structure. In fact, the built in LinkedIntList

is a doubly linked list. I wanted to keep it

simple, so we’re studying a singly linked

list.

Yes, a circular list is another variation that

is sometimes used.

For Linked Lists, we say that adding/removing is much

more efficient than in conventional lists. But it still

takes a loop to traverse through the list to get to an

index. Is this payoff worth it, say, to make LL a useful

alternative to conventional lists?

Thanks!

Different applications will have different

needs, so it’s good to have alternatives to

choose from. If you need random access,

you’d want to use an array-based solution.

If that’s not as important as adding and

removing, then you’d be more inclined to

use a linked list.

