

CSE143 Lecture Questions for Friday, 4/9/21

Question Answer

That was an awesome piano arrangement!

The one you played! But I guess both!

Haha...thanks. Or are you referring to what

Kevin did to make it easier for piano

players? If so, I agree.

Thinking back to our earlier classes, how did the

ArrayIntLists end up shifting their sizes so

dynamically? If we removed an element in the middle

for example, all the other elements would get shifted

back by a value of one. I’m confused because I don’t

remember ever defining an instance method for that in

lecture. I only remember methods like add, set, and

remove. Am I missing something?

OK so it was already implemented in the class but we

just didn’t cover it in lecture? Because i thought we

were building the ArrayIntList from scratch. Okay that

makes a lot more sense. I thought I missed an entire

portion of the lecture or something. Thanks!

If you’re talking about this quarter, I

covered the appending add in lecture but I

didn’t discuss adding at an index (in the

middle) or the remove method, both of

which require shifting. I had that as part of

the first section, although I think most TAs

didn’t have time to cover it because they

were doing ice breaker activities. I briefly

mentioned it in the beginning of

Wednesday’s lecture last week, including

the fact that add is harder to implement

because shifting right is harder than shifting

left. Chapter 7 discusses both in detail.

Yes, I didn’t have time to cover it in lecture.

I referred people to chapter 7 for a more

detailed discussion.

Is there a reason to use interfaces besides having

flexibility in parameters?

Got it, thank you!

It’s flexibility for everything, not just

parameters. There are other good reasons.

For example, sometimes you want to

optimize a bit of code and you find that you

can do that by replacing some class with a

different version of it. If someone has

written code using a specific class like

ArrayIntList, it is harder for the optimizer to

replace it. If you have used the less specific

IntList, then it is more likely that you can

replace it with some more efficient version.

I have another question about one of the earlier

concepts about the iterator. Specifically, I’m having

trouble understanding this statement: Iterator<Integer>

itr = list.iterator();

Since the iterator’s constructor is defined under the

iterator object class, how does list.iterator() work since

technically the object ‘list’ can’t call for this

constructor and only the iterator object can? Moreover,

we defined the iterator constructor to take in a

parameter Arrayintlist list and we didn’t pass anything

into the above statement. How does this even compile?

Ok so essentially, since the iterator is a subclass of the

ArrayIntList, this works? Alright I thought that since

every object came with an iterator, it would be a subset.

Okay, understood. I think I’ll get a better understanding

after going through the notes again. Thanks for

answering!

The line of code you have pointed out is

from the client code. The client asks the

ArrayIntList to give it an iterator. It’s the

ArrayIntList class that constructs the

iterator. It does so with this line of code:

 return new ArrayIntListIterator(this);

I mentioned that this is an interesting use of

the “this” keyword to indicate which

ArrayIntList the iterator should be iterating

over.

No. The ArrayIntListIterator class is a

separate class from ArrayIntList. Anyone

can construct an ArrayIntListIterator when

it is done this way, including an

ArrayIntList.

It’s not true that objects come with iterators.

They have to be implemented, as we were

doing with ArrayIntListIterator. It can be

confusing because the built-in classes like

ArrayList<E> and LinkedList<E> have

iterators, but that’s because programmers

wrote the code to make that work (code like

our ArrayIntListIterator).

At this point in time, should we know the

characteristics of ArrayIntList vs LinkedIntList? Or

should we just be aware that they’re somewhat

different? Like HashSet vs TreeSet etc

Cool. Thank you!

You don’t have to understand the

differences between these structures. We

will spend all of next week talking about

how LinkedIntList is implemented.

Is this homework assignment some form of a sound

synthesizer? I’d really like to see the code behind the

conversion from the numbers to sound, that sounds like

something pretty cool to see.

Yeah. It’s shockingly similar to actual acoustic guitar

sound.
Oops. HarpsichordLite doesn’t have the same ring to it.

It simulates a musical instrument. I guess

that counts as a synthesizer. It is sending

simple signals to the sound card. I include

some links if you want to read a bit more

about all of this. I find it fascinating that

such a simple approach produces such
beautiful sounding music. Kevin Wayne

admitted during his presentation that this is

really more of a harpsichord than a guitar.

Yeah, I don’t think HarpsichordLite will sell

well. :-)

When we use an interface to create an object and assign

it a variable, and then later assign that variable to

another object, does the information automatically

transfer over? For example, when we changed list1 to

equal LinkedList after being an ArrayIntList, is the new

LinkedList empty or filled with the same info? Ok,

thank you!

We called new on a LinkedIntList, which

returns a brand new (and therefore empty)

list.

I’m confused as to what the goal of the homework is.

Are we making a class of 37 notes or are we making an

interface that will be able to like accept other classes

that code for notes?

In the second part of the assignment you are

writing a class called Guitar37 that is an

implementation of the Guitar interface. It

keeps track of 37 different GuitarString

objects.

I’m confused on how you ran the Guitar Hero program.

Is it possible for us to run it because I am getting errors

when I compile the program? Oh, right. Thank you

You have to finish the first part of the

homework first, which is to implement a

GuitarString class. Then you will be able to

run GuitarHero with GuitarLite.

How are random numbers able to produce specific

notes? Like, shouldn’t a specific note have specific

frequencies and sound waves? I’m confused about the

part of the spec where it says that a queue of random

numbers are able to produce specific sounds…? Does

my question make sense?

I’m starting to make sense of the homework spec now!

Thank you!

Your question makes perfect sense. I had

the same confusion and, to some extent, I

still find it confusing. That’s why I said that

at first I didn’t think I understood what I

was supposed to do. But I followed the

instructions and it worked. I think that the

physics of sound and how the ear perceives

it is not a simple thing. You need to have

the white noise pattern for the ear to be able

to recognize it. The frequency with which

you play that short randomized sequence

determines the pitch that the ear perceives

(high pitch for short sequences that are

produced at a higher frequency and lower

pitch for long sequences that are produced

at a lower frequency). Make the leap of

faith and just do what the writeup says and

you will be pleasantly surprised (as I was) to

find that it works even though I don’t

entirely understand why.

What is the main purpose of using Point[]? I gave that as an example to review some

issues related to working with an array of

objects. It’s different than working with an

array of primitive values like an int[]. You

will be working with an array of objects in

the homework, so it seemed useful to review

these issues.

What’s the difference between ArrayIntList and

LinkedIntList interfaces?

They aren’t interfaces. Those are classes.

In the lecture we defined an interface called

IntList that they both implement. We have

talked about how ArrayIntList is

implemented in these first two weeks. Next

week we will discuss how LinkedIntList is

implemented.

Love the analogies! Really helpful and makes me

chuckle.

thanks

WOAH! That was so cool??? Never would have

expected that I would hear sounds from JGRASP???

How does that even work!!

I’m with you...it’s still a bit of a mystery to

me that it sounds so good.

At 10:08 isn’t it possible to add both the ArrayIntList

and the LinkedIntList as parameters in the processList()

method?

Yeah, I thought by having two parameters it will allow

the method to be compatible with both types of lists.

Not true?

Makes sense. Thanks!

Are you suggesting two parameters? That

would be odd. We’re trying to write a

method that acts on one list. And what if

you had two LinkedIntList objects?

Not true. How then would you know which

list to use? And how can you call it passing

it just one list? If you knew you had exactly

one ArrayIntList and exactly one

LinkedIntList, then two parameters of those

types would work. But that’s not what we

have here.

Wow that piano result is so cool! Yes, it’s a pretty cool program once you

finish it.

