

CSE143 Lecture Questions for Wednesday, 4/7/21

Question Answer

Can you explain a little more on why we are using

LinkedList<E> for implementing Queue<E>?

That makes sense! Thank you so much!

We need to use some implementation. That

just happens to be the simplest one to grab.

When we discuss linked lists next week, it

will be a little more clear why a linked list

provides fast access for adding at the back

and removing at the front.

Is there ever a situation where you don’t want to keep

track of/update size in the constructor? For example, do

it elsewhere or not do it at all?

Is part of it also that taking care of that in the

constructor is safer/more efficient? Ok, thanks!

You want to know that size will be set

appropriately when an ArrayIntList is

constructed. We do it in the constructor, but

we could also have relied on the default

initialization of the field. But you’d always

want to know that it would be set properly

no matter what.

I just do it for readability.

I'm a little confused about why when we set size = 0, it

clears the arraylist. I thought that we updated the size

manually, so wouldn't the arraylist still have values? Oh

that makes so much sense now. Thanks!

The size field is used to keep track of which

elements of the array are currently part of

the list. By resetting to 0, we say that

nothing is in the list. There might be old

values from previous calls on add that are

stored in the array, but the client has no way

to access those and they will be overwritten

if the client makes new calls on add.

Hi Stuart:

Homework 2 will be posted on this Friday is that

correct? And will all homeworks in the future be posted

on Fridays? Cause I remember you usually post the

homework on Wednesdays during 142 last quarter. Just

want to make clear about that. Ok thanks. I have not yet

switched from the pattern of 142 yet. Haha :) Thanks!

Most will be posted on Fridays, including

homework 2. Homework 8 sometimes goes

out early.

Does HW8 sometimes go out early because it’s harder

than usual?

On a similar vein, what does the homework look like in

terms of difficulty/length as the quarter goes on? Does

it match the difficulty of the content throughout the

quarter? Hm ok. Thanks!

It’s worth 30 points, so it’s longer.

I’m not sure how to answer that. The

assignments in 143 tend to be more

conceptual than detail oriented.

Why are interfaces favored over using classes by

themselves?

Ohhh that makes sense. Thanks!

Using interfaces leads to more flexible code.

For example, suppose that you wrote 500

lines of code for manipulating a

List<String> and in one of those lines you

called new ArrayList<String>. If you

wanted to switch to a LinkedList<String>,

you would only need to change it in one

place because if you use the interface, it can

refer to either kind of list.

Could you clarify what “conceptual” means when you

describe 143 in comparison to 142?

I see so is it like we’ll be looking at things from a more

higher-level/big picture view rather than focusing on

the grammar of it? Ok, thank you.

There are a lot of details associated with

things covered in 142. Just think about

classes, for example. There are a lot of

syntax details to know about constructors,

fields, the implicit parameter, etc. We’re

going to cover something called recursion

that in a sense can be covered in 10 minutes.

No details. But it takes a while to learn how

to use recursion well. The concept of

recursion takes time to learn, but it has few

details associated with it.

It’s not really big picture. It’s just different

kinds of things to learn. Some things have a

lot of details associated with them and other

things are just challenging concepts.

Are reference semantics similar to variable scope? No. Different concepts. Both important.

You mentioned earlier that a List can do everything that

a stack/queue can do. What does that mean?

I see. Can stacks and queues only have integers? Or any

data type? Ok thank you.

We know that we can insert and remove

values in the middle of a list. You can’t do

that with stacks and queues. There are

many other things you can do with lists that

you can’t do with a stack or queue.

No, they can store any type of data. It’s

Queue<E> and Stack<E>.

Does code efficiency and simplicity fall under the

category of style?

I see, like Boolean Zen. So should we prioritize code

efficiency/simplicity outlined in the style guide and hw

spec over simply trying to have overall efficiency? Ah

ok interesting. Thank you!

Those are big topics potentially. We have

various style issues that relate to efficiency

and simplicity. For example, we take off

points if you use extra data structures that

you don’t need or if you write loops or

if/else structures in an overly complex way.

We don’t tend to worry about overall

efficiency unless we have specifically

mentioned it. For example, homework 2

will have a detail you have to get right for

overall efficiency.

Is linkedList an implementation of Queue? LinkedList<E> is a class that has many

properties. One of those is that it

implements the Queue<E> interface. We’re

going to talk about linked lists next week.

