

CSE143 Lecture Questions for Monday, 4/5/21

Question Answer

As a guideline, how many times should you have a

chunk of code before you should make it into a

method? Thank you!

I tend to introduce the method once I have

two occurrences of the same code.

Is the order of parameters considered in the signature?

If I had method (int i, String str) vs method (String str,

int i) would that work?

Cool. Thanks!

Order is part of the signature. (int, String) is

a different signature from (String, int)

For the code at min 27, can you set up the for loop so it

has i = size; i>0; i++ in the for loop instead?

Okay, thanks

Yes...keep watching.

For removeAll, would it be more efficient to use an

Iterator object or can we not since we haven’t

implemented that for ArrayIntList?

Thanks!

At the point where I showed it, we hadn’t

implemented the iterator. It wouldn’t be

more efficient.

Why can’t next() return a value of type int? Is it just

because the Iterator<Integer> interface interacts with

Integer and not int?

Yep! Just wondering about return types. Thanks

Yes, it’s because of the Iterator<E>

interface. That requires that the return type

be Integer. But as I’ve mentioned, Java will

turn it into int for you.

If I’m still feeling confused about building a

constructor, would it be better to watch/read/look at

more examples of constructors, or is there some other

pieces of information that I could be missing that I

should study more first?

Thanks, I will look into those!

You could look at the resources from last

quarter’s 142 class about constructors.

There was a lecture where it was discussed,

there are lecture slides, and there is a short

extra video for 3/1:

https://courses.cs.washington.edu/courses/cs

e142/21wi/calendar.shtml

Just to make sure I’m understanding constructors-- so at

the start of the class code, there will be some fields

being declared; and will all those fields always need to

be included in the constructor?

So in some of the examples, we declare size = 0 in the

constructor anyway, even though it’s already 0 by

default; is this just a special case for size?

So the safest thing to do when coding a constructor is to

include all the fields, even if some of them should be 0

anyway? Or is it just situational?

Ok thanks!

Java will auto-initialize all fields to the zero

equivalent for the type. If that’s good

enough, then you don’t need to set the field

in the constructor. Often that isn’t good

enough. For example, with ArrayIntList,

you have to construct an array.

No, it isn’t necessary to set fields like that to

0 but I feel that it improves readability to

include that.

It’s more a personal style choice. It’s up to

you whether you want to include the lines of

code that set fields to their default value.

https://courses.cs.washington.edu/courses/cse142/21wi/calendar.shtml
https://courses.cs.washington.edu/courses/cse142/21wi/calendar.shtml

Is “implements” keyword a way to access the interface

when you can’t do it on default

So to use a specific interface, you use implements to

tell Java the class has it?

Oh ok, thank you

It is telling Java that the class you are

writing is something that implements a

specific interface. It also creates a

relationship between the two. For example,

ArrayList implements List, which means

that every ArrayList object is also

considered to be of type List.

Yes, to tell Java that it implements that

interface. We’ll see more examples of this

in Friday’s lecture.

For the clear() method, could we just do elementData =

new int[capacity] assuming we’ve stored capacity.

Okay, thanks! The solution in the video was more

elegant anyways haha.

You would still have to reset size to 0 even

in that case and it would be very inefficient

because it would take a lot of time to

construct that array and initialize its

elements to 0.

What does the implements keyword do while defining a

class?

Will it throw an exception if it does not have all the

same methods (as defined in the interface)?

Okay thank you!

It lets Java know that this class implements

the given interface. Java verifies that it does

implement the interface and then the class is

considered to be of that type (e.g., ArrayList

is also of type List). We’ll see more

examples of this in Friday’s lecture.

If it doesn’t include all of the methods, then

it won’t compile.

19:40 so you’re choosing to scan the other list because

it’s shorter?

Also couldn’t you use the “contains” method in your

list instead and it would still work?

Why wouldn’t you be able to know this list’s location

but you will know the locations of the other list?

Thanks!

It is possible to write the code either way

and you can come up with scenarios where

one way or the other works better. But it

turns out to be much more convenient to

write it the second way. For example, the

contains method doesn’t help you for

removing from this list because you need

to know its location. You could use

indexOf, but that is highly inefficient

because it scans over and over to get the

multiple occurrences. Just try writing the

code the other way and you’ll see that it’s

very difficult.

You don’t need to know locations in the

other list because you’re not changing the

other list. You need locations in this list

because it’s the one that needs to be

changed.

What is the difference between Array of type Int versus

Array of type Integer?

When would you use type integer instead of type int?

Thanks!

I mentioned this in Friday’s lecture. An

Integer object is a “wrapper” for an int. It

has one and only one field of type int. But

in practical terms, you can treat it as if it is

type int and it will behave as expected most

of the time.

As I said in Friday’s lecture, you have to use

type Integer for structures like

ArrayList<E>. The same is true for objects

like iterators.

