

 CSE143 Lecture Questions for Friday, 4/2/21

Question Answer

What is the difference between using an iterator and a

regular for loop? For example:

I tried this and they do the same thing, so what would

be the benefit of doing one over the other?

Ah that makes sense, thank you!

That’s two ways to accomplish the same

thing. In one case you’re doing a lot of the

work by keeping track of an index variable.

In the other case, you have the iterator do

most of the work. For some structures, you

don’t have an option like this. For example,

with a set, there is no first option because it

doesn’t have a get method (no indexing

scheme).

Is the ‘Iterator’ an interface? If so, is that why we say

Iterator<...>, are there different “sub-interfaces” an

iterator has?

Oh that sounds cool, thanks!

There is an Iterator<E> interface in Java and

it is used to store references to iterator

objects. There are variations on the Iterator

interface that allow you more flexibility in

how you move through the structure (e.g.,

moving both forwards and backwards).

In the radio analogy, would making sound be an

interface or would that just be a behaviour?

I see. So just in short, interface is just a list of things

that you’d expect a program to be doing in order to

‘qualify’ as a subclass of a class?

Right. Thanks so much!

It’s hard to explain. :-)

It would be something the radio does, but it

isn’t a behavior in the sense I’m describing.

I’m talking about how the client interacts

with the object. So it wouldn’t be part of

the interface except in the sense that you

would describe how the radio controls

change that observed activity. As you

change the volume, you expect to hear the

sound more loudly, for example. It’s not a

perfect analogy.

You have that mostly right. It’s a list of

methods you expect to be able to call along

with a description of what effect they have

and you have to have all of those to qualify

as being of that type.

Quick question but does the homework only revolve

around what we have covered so far is it in from the

span of Friday to Wednesday for each week?

No. Most weeks I’ll hand out the

homework on Friday. This week we

finished a bit early and I didn’t want to

delay allowing you to start on the

homework, so I gave it out on Wednesday.

Outside of the verification, is there any other way we

can tell if the coding we have meets the code quality

outside of eyeballing and comparing to the unoffiial

style guide? Or is that something we can do with TA’S?

We won’t give you feedback on your

homework before you turn it in. We call

that “pregrading.” We’ll explain the style

guidelines, but then you are expected to

apply them to the program. Most students

in 143 lose some style points. I wouldn’t

worry about it. The key is to learn from any

of those mistakes and do better in the future.

At the beginning of lecture you had a list that showed

translations from an array to an arraylist. Could you

explain the line that says “new String[10] => new

ArryList<>()”?

So its a general example for an unspecified array type?

Oh, that makes sense! Thanks!

I was trying to show the ArrayList version

of what you might have learned with arrays.

So you know that to construct an array, you

say something like:

 new String[10]

The equivalent for an ArrayList is to say

something like:

 new ArrayList<>()

It’s a general example for an array of String

values or an ArrayList of String values.

I think perhaps you are being confused by

the thought that this is a complete line of

code. It would tend to be in a line of code

like this:

 String[] data = new String[10];

Versus a line of code like this:

 List<String> list = new ArrayList<>();

I’m still having trouble wrapping my head around

“interface”; so we would make sure there is an interface

by starting something with List? And not with

ArrayList?

So are there other interfaces other than List? And is

there some sort of pattern like [interface] and

Array[interface], or is that just for List and ArrayList?

Ok, thank you!

ArrayList is a class. It is a complete

description of an object. There is also an

interface called List. The interface is not

complete. It contains a list of methods, but

no information about how to implement

those methods. The issue of where to use

List versus ArrayList is a bit of a style issue.

You need to use ArrayList when you call

new because you are constructing an actual

object. But in the other places, we can be

more general and use the List interface

instead. That makes our code more flexible

because we can replace our ArrayList

objects with other objects that also

implement the List interface.

There are many interfaces in Java. It is

common to have names like List/ArrayList.

In the lecture I also show Set/TreeSet. But

that’s just a matter of style. There is no

particular reason that they have to match.

How many late days do we have? 10 free late days, but remember that any one

program can be turned in up to 4 days late.

Is there a rubric for each assignment? How many points

can be lost to style versus each required component of

the assignment?

Are those rubrics available to students? Like prior to

submission?

Thank you!

We do have grading rubrics for the various

assignments. Approximately half of the

points are for style and half for what we call

“external correctness.”

No, they are not available to students.

Can we make an ArrayList storing multiple types of

objects?

Oh so subtypes of objects can be stored in an ArrayList

of the supertype?

Okay thank you!

Yes and no. You get to pick the type of

element. We generally try to store the same

kind of values in any given ArrayList. But

you could say that it stores Object and then

you could put any kind of value into the list.

That is not usually what we want to do. But

sometimes there are subtypes we are

interested in, like an ArrayList of Critter

objects that are slightly different kinds of

critters.

yes... ArrayList<Object> could store any

kind of object values.

Does the abstract keyword in Java have to do with

abstraction?

Yes it does. We’re going to talk about that

later in the quarter. The quick version is

that it allows you to describe high level

information without low-level details. For a

method, that would be its header (name and

parameters) but no method body.

What’s the main difference between iterator and list?

Ohhhhh I seeee!! Thank you!!

The list is the big data structure that has all

of the list values stored in it. An iterator is

what we call a “light weight” object. It can

be used to traverse the list, but it isn’t the

list itself. If you’ve been to a pharmacy,

you know there are staff members who can

wander around the pharmacy and access the

drugs stored there. The pharmacy is like the

list (big, with lots of stuff in it). The iterator

is like the staff member (has access, but

isn’t itself the pharmacy).

Are List and ArrayList different? Yes. ArrayList is a class (complete

definition). List is an interface (only

mentions method headers, without

implementation details).

When are we supposed to use List vs ArrayList You use ArrayList when you construct the

object and List for variables, parameters,

return types, and fields.

At 18:00 when you say “this is the API” are you talking

about the individual methods like the “indexOf()”

method?

OR are you saying all the List<E> methods together is

the ONE API?

So all the methods in List<E> together = the 1 API?

(sorry I’m a little confused by your answer)

We use the term API to refer to the

description of how to use some software

component. That would include method

headers and descriptions of what the

methods do. It might include other details

as well. The List<E> method descriptions I

was showing constitute the bulk of the API.

I’m not sure what you mean by “the 1.”

Each software component has its own API.

You can say that the collection of method

descriptions for List<E> are a pretty

description of its API.

I think this was asked earlier but I just wanted to make

sure, are we allowed to use foreach for HW #1? Or is

that only for HW #2? Great! Thanks.

You can use the foreach loop for homework

1.

Can you explain why we use List<String> instead of

ArrayList<String>? You explained how it’s to make it

more generic with the cookie analogy. I’m not seeing

the connection with the cookie analogy. Like why is it

important to make it more generic for Array in

particular.

Gotcha! Thanks!

It has to do with Java’s type system. Java

cares a lot about what type of data you are

working with. If you say you are working

with data of type ArrayList, then you are

restricted to just that kind of object. If you

instead say that it can be anything of type

List, then it will work for ArrayList and for

other types of lists. We’re trying to write

the best code we can, so it’s better to make

it more general. The cookie analogy had to

do with what type of customer are you

willing to work with. Most businesses

would want to accept a wide range of

customers and not be overly specific.

