

CSE143 Lecture Questions for Wednesday, 5/19/21

Question Answer

You mention that every interesting binary tree problem

that we encounter will need a public and private pair.

How do we know if the problem does not require it?

What should we look out for?

That answers my question, thank you!

You’re not going to encounter one where

you don’t need it unless it’s something

really trivial like isEmpty. If you have to

traverse the tree, then you’ll want a

public/private pair to at least have a root

parameter.

If you had instead done (value < root.data) goes to the

left and (value >= root.data) goes to the right, would the

output still be in alphabetical order when you do an in

order search? In other words, does it matter which one

is <= or >=?

Ok thank you.

It doesn’t matter whether duplicates go to

the left or the right as long as you are

consistent.

I’m not sure if you go into this later in the lecture, but

what happens if you do preorder or postorder rather

than inorder?

Would the only thing that changed be that Twyla would

move in the order?

Ah ok. It wouldn’t be alphabetical anymore.

Thank you!

There is nothing special you’d see with a

preorder or postorder traversal of a binary

search tree.

No, it would affect the entire sequence

because we’d be doing the same thing at

every level, not just at the top of the three.

That’s right...it wouldn’t be in alphabetical

order.

Seeing as LinkedLists could be traversed using loops, is

a bad solution to BinaryTree problems to use while()

loops and a reference to the current node as well?

I see. Keeping track of traversed values wouldn’t be

possible. Thanks!

Trying to write loop-based solutions for

binary trees tends to lead to very

complicated code. The recursive solutions

we are encouraging are much simpler in

many cases. You’d also need an additional

data structure like a stack to solve them

without recursion.

Could we just do root.left = new IntTreeNode to get

around the x assign change x problem? Or would that

be looking too far ahead for a recursive method?

So it’d be better to just use the recursive method with

the x assign change x instead of trying to get around the

issue?

You could add code like that, but it would

have to be duplicated three times because

sometimes you are resetting overallRoot,

sometimes you are resetting root.left, and

sometimes you are resetting root.right.

That’s a lot of redundancy and when you do

something three times, it increases the odds

that you’ll introduce a bug in one of them.

Yes, using x=change(x) with recursion leads

to much simpler code that is easier to verify.

