

CSE143 Lecture Questions for Friday, 5/14/21

Question Answer

I love the fun anagram demonstration at the start! :-)

Haha yeah it is quite nifty.

I presented this assignment at a conference

in a panel called “nifty assignments.” I

think you can tell something is nifty when

people really want to run the program

themselves to type in their own name or

other items to turn into anagrams.

How would we change this program to work with 3D

chess? I’m guessing it would be much more

complicated.

I see; does backtracking work only with Qubic just

because it has much fewer possibilities than 3d chess

would have?

I see so backtracking is not necessarily efficient, but it

is easier than other search approaches, so it is a good

option for problems that have “few” options?

Ok, thank you.

The basic backtracking idea would work

with chess where you consider all possible

moves and just explore where it leads, but

chess would lead to too many options to

explore in a meaningful way. I’ve given an

assignment in the past where I have a

program find a guaranteed win in a game

called Qubic which is 3-dimensional tic-tac-

toe on a 4x4x4 board.

Yes, Qubic is “small” enough that simple

backtracking works. Problems like chess

require more efficient search approaches.

Yes, exactly.

So this 8 queens problem is different from exhaustive

search because, as soon as one pathway doesn’t work,

you go backwards to a different choice? Does that

sound right?

Ok, and by contrast, in exhaustive search, you go

through every single possibility right?

Ok I think I get it, thanks.

Yes, the big difference is the recognition of

dead ends that you don’t explore further.

Yes, in exhaustive search you’d explore

everything.

Is recursion zen used because it is good practice/easier

to read OR because it is necessary for the code to work?

Ok, thank you.

Ohh is it because it avoids running into the remove

method? Because if you don’t do explore, the next line

of code to run is remove.

What is the other way to make it work? Have the if

statement after the explore method? Ah ok.

We apply those ideas to simplify the code.

You can generally get it to work either way,

but it’s helpful to be able to make things

simpler. That also tends to avoid bugs

because the code is easier to verify for

correctness (fewer cases).

You can make it work either way.

I’m not going to figure out how to write bad

code. :-)

I’m afraid to know, but what’s the big O notation for a

program like AnagramSolver? It seems that there’s a lot

of lines of code running.

Yeah, it feels super long and expensive

Theoretically it’s n^m where n is the size of

the dictionary and m is the max number of

words allowed (potentially VERY

expensive).

If our letter inventory code is sufficiently functional, do

we need to worry about making corrections to it based

on the feedback we got for it? Or do we just need to

focus on the task we’re given for homework 6?

Ohh ok, I misunderstood. I understand now, thank you.

I provide a compiled version of

LetterInventory that you should be using.

It’s guaranteed to behave properly.

