

CSE143 Lecture Questions for Monday, 5/3/21

Question Answer

Will there be an assignment due next Thursday (5/13)?

Thanks!

Follow up question-- will the midterm be due Tuesday

night at 11pm? Thank you.

No.

Tuesday, 11:59 pm.

You mentioned that the inheriting class TypeB takes all

the public methods of TypeA, but what if a public

method requires a private helper method as well?

I see. So writing code in the inheriting class would

require the author to re-write the helper method if need

be.

The original public method can call the

private method because it is in the same

class. The inheriting class would not have

access to the private method, though. It’s as

if the inheriting class is a client (so it works

to call the public method, although it can’t

access the private method).

It could require rewriting the private

method, although it might be enough to

have access to the public methods.

Is Recursion the last topic to be present on the

Midterm? Or can it also include what we are learning

today?

Okay! Maybe I haven’t watched it all the way! Thank

You So Much!

The midterm includes inheritance. The

question I go over in lecture is an example

of what to expect on the midterm.

If we overwrite a method in a subclass, but declare the

variable as the superclass type, and run the method that

was overwritten, which one runs? I see. So it wouldn’t

matter even if we declared it as a superclass.

Objects always behave the same way no

matter how you refer to them. So an object

of the subclass would always execute it’s

own version of any method.

It never matters what type of variable is

used to refer to an object in terms of how it

behaves. This is how things are in the real

world as well. You wouldn’t find a legal

secretary doing things the way a secretary

does.

Why can’t we just declare x to be a Type B variable

assigned to a new Type B object instead of having to

cast it from a Type A variable again? Or am I missing

some idea/concept here?

That makes sense! Thank you!

Certainly it’s simpler when the variable is of

the same type as the object, but it is often

the case in an object-oriented program

where they differ. For example, the critter

simulator has tons of code that acts on

objects of type Critter even though the

actual critters we include tend to be of a

different type that inherits from Critter.

Does extending a class also extend it’s private

methods? Or only it’s public methods?

Also, how does inheritance affect fields?

The subclass inherits all methods and fields

of the superclass, although it does not have

access to private fields and methods.

The “default” inheritance is extends Object. Is there a

default implements parallel to this?

No. If you don’t have an implements

clause, then you don’t implement any

interfaces.

Suppose I have var5 declared as Object var5 = new

Three(); and I have another class between One and

Three that also has a method 2. If I call ((Three)

var5).method2(); which method2 will execute?

Wait so even if I cast it to the class between One and

Three, it will execute the method2 for Three?

Okay, thank you!

Objects always behave in the same way, so

you don’t have to look at a variable or a cast

to figure out how it will behave. A Three

object will always do exactly the same thing

when you call its method2.

Yes, an object always behaves the same

way. Casting has no effect on that.

Does the compiler only verify that there is a cast no

matter what the variable is being casted to?

In the example that you gave, casting to TypeA would

pass the compiler check to call bOnlyMethod(), but

TypeA doesn't have that method, right? I am still

confused by this.

Okay, thank you for clarifying!

The first step is the compiler verifying that

the class you are casting to has the method

you are calling. The second step is to make

sure the cast is legal.

There are some cases where the compiler

will determine that a cast has no hope of

working. I don’t test those situations

because it’s pretty subtle.

No, casting to TypeA would not have

worked. The first step is the compiler

checking to make sure that the class you are

contracting for has the method you are

calling. When there is a cast, you use the

class that you are casting to. So the

compiler would ask whether TypeA has a

bOnlyMethod and the answer is no. So it

would lead to a compiler error. Casting

changes which class the compiler checks,

but it doesn’t somehow allow everything to

pass its test.

