
 CSE143 Midterm, Spring 2021

This is a closed-book/closed-note exam. There is a "cheat sheet" at the end.

You are not allowed to access the internet or other sources during the exam.

The exam is not, in general, graded on style and you do not need to include

comments. For the stack/queue question, however, you are expected to use

generics properly and to declare variables using interfaces when possible. The

cheat sheet at the end of the exam mentions important restrictions on Stacks

and Queues that you must follow.

You are allowed to abbreviate "compiler error" and "runtime error" for the

inheritance question (as in "ce" and "re" or "c.e." and "r.e."), but you should

otherwise NOT use any abbreviations on the exam.

You are NOT to use any electronic devices while taking the test, including

calculators.

Give yourself 60 minutes to complete the exam and then scan it (preferably as a

pdf) and upload it to the course web page.

1. Recursive Tracing, 15 points. Consider the following method:

 public void mystery(int x) {

 System.out.print("*");

 if (x <= 0) {

 System.out.print(".");

 } else if (x % 2 == 0) {

 System.out.print(x % 10);

 mystery(x / 10);

 } else {

 mystery(x / 10);

 System.out.print(x % 10);

 }

 }

 For each call below, indicate what output is produced:

 Method Call Output Produced

 mystery(7); _____________________________________

 mystery(246); ______________________________________

 mystery(195); ______________________________________

 mystery(1234); ______________________________________

 mystery(29548); ______________________________________

2. Recursive Programming, 15 points. Write a recursive method called maxDigits

 that takes two integers as parameters and that returns a new integer that is

 composed of the larger digit from each number in corresponding positions.

 For example, the call maxDigits(3509, 6238) would return 6539, the call

 maxDigits(70519, 89420615) would return 89470619, and the call

 maxDigits(5555, 372) would return 5575, as indicated below.

 3 5 0 9 7 0 5 1 9 5 5 5 5

 6 2 3 8 8 9 4 2 0 6 1 5 3 7 2

 (max of) ------- (max of) --------------- (max of) -------

 6 5 3 9 8 9 4 7 0 6 1 9 5 5 7 5

 Notice that if one number has more digits than the other, then its leading

 digits are used in the result (you can think of the corresponding digits in

 the other number as being 0). Your method should throw an

 IllegalArgumentException if either number passed as a parameter is negative.

 You are not allowed to construct any structured objects to solve this

 problem (no string, array, ArrayList, StringBuilder, Scanner,

 etc) and you may not use a while loop, for loop or do/while loop to solve

 this problem; you must use recursion.

3. Details of inheritance, 20 points. Assuming that the following classes have

 been defined:

 public class Couch extends Table {

 public void method1() {

 System.out.println("Couch 1");

 }

 }

 public class Table extends Chair {

 public void method1() {

 System.out.println("Table 1");

 }

 public void method2() {

 System.out.println("Table 2");

 super.method2();

 }

 public void method3() {

 System.out.println("Table 3");

 method1();

 }

 }

 public class Chair {

 public void method2() {

 System.out.println("Chair 2");

 }

 }

 public class Lamp extends Chair {

 public void method1() {

 System.out.println("Lamp 1");

 }

 public void method2() {

 System.out.println("Lamp 2");

 }

 }

And assuming the following variables have been defined:

 Table var1 = new Table();

 Chair var2 = new Table();

 Table var3 = new Couch();

 Chair var4 = new Lamp();

 Chair var5 = new Couch();

 Object var6 = new Chair();

In the table below, indicate in the right-hand column the output produced by

the statement in the left-hand column. If the statement produces more than one

line of output, indicate the line breaks with slashes as in "a/b/c" to indicate

three lines of output with "a" followed by "b" followed by "c". If the

statement causes an error, fill in the right-hand column with either the phrase

"compiler error" or "runtime error" to indicate when the error would be

detected.

 Statement Output

 --

 var1.method2(); ____________________________

 var2.method2(); ____________________________

 var3.method2(); ____________________________

 var4.method2(); ____________________________

 var5.method2(); ____________________________

 var6.method2(); ____________________________

 var1.method1(); ____________________________

 var2.method1(); ____________________________

 var3.method1(); ____________________________

 var4.method1(); ____________________________

 var1.method3(); ____________________________

 var2.method3(); ____________________________

 var3.method3(); ____________________________

 ((Lamp)var4).method1(); ____________________________

 ((Lamp)var2).method1(); ____________________________

 ((Table)var5).method1(); ____________________________

 ((Couch)var1).method1(); ____________________________

 ((Chair)var6).method2(); ____________________________

 ((Couch)var5).method3(); ____________________________

 ((Table)var5).method3(); ____________________________

4. Linked Lists, 15 points. Fill in the "code" column in the following table

 providing a solution that will turn the "before" picture into the "after"

 picture by modifying links between the nodes shown. You are not allowed to

 change any existing node's data field value and you are not allowed to

 construct any new nodes, but you are allowed to declare and use variables of

 type ListNode (often called "temp" variables). You are limited to at most

 two variables of type ListNode for each of the four subproblems below.

 You are writing code for the ListNode class discussed in lecture:

 public class ListNode {

 public int data; // data stored in this node

 public ListNode next; // link to next node in the list

 <constructors>

 }

 As in the lecture examples, all lists are terminated by null and the

 variables p and q have the value null when they do not point to anything.

 before after code

-----------------------+-----------------------+-------------------------------

 p->[1] | p->[1]->[3] |

 | |

 | |

 q->[2]->[3] | q->[2] |

 | |

-----------------------+-----------------------+-------------------------------

 | |

 | |

 p->[1]->[2] | p->[2] |

 | |

 | |

 q->[3] | q->[1]->[3] |

 | |

-----------------------+-----------------------+-------------------------------

 | |

 | |

 p->[1]->[2]->[3] | p->[4]->[3] |

 | |

 | |

 q->[4] | q->[2]->[1] |

 | |

 | |

 | |

 | |

-----------------------+-----------------------+-------------------------------

 | |

 | |

 p->[1]->[2] | p->[2]->[3] |

 | |

 | |

 q->[3]->[4]->[5] | q->[5]->[4]->[1] |

 | |

 | |

 | |

 | |

 | |

 | |

 | |

 | |

-----------------------+-----------------------+-------------------------------

5. Array Programming, 10 points. Write a method called sublist that takes as

 parameters a "start" index (inclusive) and a "stop" index (exclusive) and

 that constructs and returns a new ArrayIntList of values that contains the

 sequence of values at those indexes in a list of integers. For example,

 suppose that an ArrayIntList called list stores the following:

 [5, 4, 3, 7, 18, 24, 0, -4, 12, 15, 9]

 If we make the following call on the method:

 ArrayIntList result = list.sublist(3, 8);

 After the call, result should store the following values:

 [7, 18, 24, 0, -4]

 Notice that the new list contains values stored at indexes 3 through 7 of

 the original list. This is similar to the substring method where the second

 parameter is always one higher than the highest index you want to include.

 Your method should not change the original list of values.

 You are writing a method for the ArrayIntList class discussed in lecture:

 public class ArrayIntList {

 private int[] elementData; // list of integers

 private int size; // current # of elements in the list

 <methods>

 }

 You may assume that the indexes passed to the method will be legal. Start

 and stop will both be greater than or equal to 0, start will be less than or

 equal to stop, and stop will be less than or equal to the size of the list.

 You may use the zero-argument constructor for ArrayIntList and you may

 assume that it will construct an array of sufficient capacity to store the

 result. If start and stop are equal, you should return an empty list.

 You may call the ArrayIntList constructor, but otherwise you may not call

 any other methods of the ArrayIntList class to solve this problem. You are

 not allowed to define any auxiliary data structures other than the new

 ArrayIntList you are constructing (no array, String, ArrayList, etc). Your

 solution must run in O(n) time where n is the length of the original list.

6. Stacks/Queues, 25 points. Write a method called alternatingReverse that

 takes a stack of integers as a parameter and that rearranges the values so

 that every other value starting from the bottom of the stack is reversed in

 order. For example, if a variable s stores these values:

 bottom [1, 2, 3, 4, 5, 6, 7, 8] top

 ^ ^ ^ ^

 | | | |

 +-----+-----+-----+

 sequence to reverse

 Starting from the bottom of the stack and looking at every other value, we

 find the sequence of numbers 1, 3, 5, 7. This sequence should be reversed

 while the other values should stay in the same positions. If we make the

 following call:

 alternatingReverse(s);

 the stack should store the following values after the call:

 bottom [7, 2, 5, 4, 3, 6, 1, 8] top

 ^ ^ ^ ^

 | | | |

 +-----+-----+-----+

 reversed sequence

 This example uses sequential integers to make it easier to see the sequence,

 but you should not assume anything about the sequence. For example, if s

 instead stored this sequence:

 bottom [7, 1, 4, 18, 23, 0, -5, 12] top

 then after the method is called, it would store this sequence:

 bottom [-5, 1, 23, 18, 4, 0, 7, 12] top

 Your method should throw an IllegalArgumentException if the number of

 elements in the stack is not an even number.

 You are to use one queue as auxiliary storage to solve this problem. You

 may not use any other auxiliary data structures to solve this problem,

 although you can have as many simple variables as you like. You also may

 not solve the problem recursively. Your solution must run in O(n) time

 where n is the size of the stack. Use the Stack and Queue structures

 described in the cheat sheet and obey the restrictions described there

 (recall that you can't use the peek method or a foreach loop or iterator).

 Space is provided on the next page for your answer.

 Please write your answer to alternatingReverse below.

CSE143 Cheat Sheet

Math Methods (3.2) mathematical operations

Math.abs(value) absolute value

Math.min(v1, v2) smaller of two values

Math.max(v1, v2) larger of two values

Math.round(value) nearest whole number

Math.pow(b, e) b to the e power

Stacks and Queues (14.2) (LIFO and FIFO structures)

Queues should be constructed using the Queue<E> interface and the LinkedList<E> implementation (you may

not pass any arguments to the constructor). For example, to construct a queue of String values, you would say:

Queue<String> q = new LinkedList<>();

Stacks should be constructed using the Stack<E> class (there is no interface):

Stack<Integer> s = new Stack<>();

For Stack<E>, you are limited to the following operations (no iterator or foreach loop):

push(value) pushes the given value onto the top of the stack
pop() removes and returns the top of the stack
isEmpty() returns true if this stack is empty
size() returns the number of elements in the stack

For Queue<E>, you are limited to the following operations (no iterator or foreach loop):

add(value) adds the given value at the end of the queue
remove() removes and returns the front of the queue
isEmpty() returns true if this queue is empty
size() returns the number of elements in the queue

String Methods (3.3) (An object for storing a sequence of characters)

length() returns the number of characters in the string

charAt(index) returns the character at a specific index

equals(other) returns true if this string equals the other

toUpperCase() returns a new string with all uppercase letters

toLowerCase() returns a new string with all lowercase letters

startsWith(other) returns true if this string starts with the given text

substring(start, stop)
returns a new string composed of characters from start index

(inclusive) to stop index (exclusive)

substring(start)
returns a new string composed of characters from start index

(inclusive) to the end of the string

	CSE143 Cheat Sheet
	Stacks and Queues (14.2) (LIFO and FIFO structures)
	String Methods (3.3) (An object for storing a sequence of characters)

