
                           CSE143 Final, Spring 2021 

 

This is a closed-book/closed-note exam.  There is a "cheat sheet" at the end. 

You are not allowed to access the internet or other sources during the exam. 

 

In general the exam is not graded on style and you do not need to include 

comments, although you are required to declare all data fields and helper 

methods as private, to use generics properly, to declare variables and 

parameters using interfaces when possible, and to avoid the use of break 

statements, the diamond operator, and return from a void method.  You do not 

have to include any import statements.  Do not abbreviate any code that you 

write (e.g., S.o.p versus System.out.print). 

 

For standard Java classes such as Math and String, you are limited to the 

methods listed on the cheat sheet. You are not allowed to use the Arrays or 

Collections classes or other standard classes and methods that aren't included 

on the cheat sheet. 

 

You are NOT to use any electronic devices while taking the test, including 

calculators. 

 

Give yourself 110 minutes to complete the exam and then scan it (preferably as 

a pdf) and upload it to the course web page. 



 

1. Binary Tree Traversals, 6 points.  Consider the following tree. 

 

                                 +---+ 

                                 | 0 | 

                                 +---+ 

                               /       \ 

                             /           \ 

                       +---+               +---+ 

                       | 3 |               | 2 | 

                       +---+               +---+ 

                      /                   /     \ 

                     /                   /       \ 

                  +---+               +---+     +---+ 

                  | 7 |               | 9 |     | 5 | 

                  +---+               +---+     +---+ 

                 /     \             /         / 

                /       \           /         / 

             +---+     +---+     +---+     +---+ 

             | 4 |     | 6 |     | 1 |     | 8 | 

             +---+     +---+     +---+     +---+ 

 

   Fill in each of the traversals below: 

 

 

        Preorder traversal  __________________________________________________ 

 

 

        Inorder traversal   __________________________________________________ 

 

 

        Postorder traversal __________________________________________________ 

 

2. Binary Search Tree, 4 points.  Draw a picture below of the binary search 

   tree that would result from inserting the following words into an empty 

   binary search tree in the following order: Picard, Riker, Worf, Crusher, 

   Troi, LaForge, Data.  Assume the search tree uses alphabetical ordering to 

   compare words. 



 

3. Collections Mystery, 5 points.  Consider the following method: 

        public Set<Integer> mystery(int[][] data, int pos) { 

            Set<Integer> result = new TreeSet<Integer>(); 

            for (int i = 0; i < data.length; i++) { 

                if (i % 2 == 0) { 

                    result.add(data[pos][i]); 

                } else { 

                    result.add(data[i][pos]); 

                } 

            } 

            return result; 

        } 

   Suppose that a variable called grid has been declared as follows: 

       int[][] grid = {{5, 7, 2, 9, 5, 8}, {1, 2, 4, 9, 5, 4}, 

                       {9, 2, 4, 6, 6, 3}, {9, 5, 8, 8, 4, 9}, 

                       {6, 5, 6, 2, 6, 9}, {8, 3, 4, 1, 8, 9}}; 

   which means it will store the following 6-by-6 grid of values: 

        5       7       2       9       5       8        

        1       2       4       9       5       4        

        9       2       4       6       6       3        

        9       5       8       8       4       9        

        6       5       6       2       6       9        

        8       3       4       1       8       9        

   For each call below, indicate what value is returned.  If the method call 

   results in an exception being thrown, write "exception" instead. 

 

        Method Call            Contents of Set Returned 

 

        mystery(grid, 1)       _________________________________ 

 

        mystery(grid, 2)       _________________________________ 

 

        mystery(grid, 4)       _________________________________ 

 

4. Collections Programming, 5 points.  Write a method called acronymFor that 

   takes a list of strings as a parameter and that returns the corresponding 

   acronym.  You form an acronym by combining the capitalized first letter of a 

   series of words.  For example, the list [laughing, out, loud] produces the 

   acronym "LOL".  The list [Computer, Science and, Engineering] produces the 

   acronym "CSE".  You may assume that all of the strings are nonempty.  Your 

   method is not allowed to change the list passed to it as a parameter.  If 

   passed an empty list, your method should return the empty string. 

 

   You may construct iterators and strings, but you are not allowed to 

   construct other structured objects (no set, list, stack, queue, etc.). 



 

5. Binary Trees, 10 points.  Write a method called oddPathSum that returns 

   the number of nodes in a tree that have an odd path sum.  The path sum of a 

   node is the sum of all values from the overall root to that node.  For 

   example if the variable t refers to the following tree: 

                                 +----+ 

                                 |  5 | 

                                 +----+ 

                              /          \ 

                      +----+                +----+ 

                      |  3 |                | 12 | 

                      +----+                +----+ 

                     /      \                     \ 

                +----+       +----+               +----+ 

                |  1 |       |  2 |               |  7 | 

                +----+       +----+               +----+ 

               /      \                          /      \ 

          +----+      +----+                +----+      +----+ 

          |  6 |      | 11 |                | 10 |      |  4 | 

          +----+      +----+                +----+      +----+ 

   Then t.oddPathSum() should return 4 indicating that 4 of these nodes have an 

   odd path sum (the nodes storing 5, 12, 1, and 6) 

 

   You are writing a public method for a binary tree class defined as follows: 

        public class IntTreeNode { 

            public int data;          // data stored in this node 

            public IntTreeNode left;  // reference to left subtree 

            public IntTreeNode right; // reference to right subtree 

 

            <constructors> 

        } 

 

        public class IntTree { 

            private IntTreeNode overallRoot; 

 

            <methods> 

        } 

   You are writing a method that will become part of the IntTree class.  You 

   may define private helper methods to solve this problem, but otherwise you 

   may not call any other methods of the class.  You may not construct any 

   extra data structures to solve this problem. 



 

6. Collections Programming, 10 points.  Write a method called acronyms that 

   takes a set of word lists as a parameter and that returns a map whose keys 

   are acronyms and whose values are the word lists that produce that acronym. 

   Acronyms are formed from each list as described in problem 4.  Recall that 

   the list [laughing, out, loud] produces the acronym "LOL".  The list 

   [League, of, Legends] also produces the acronym "LOL".  Suppose that a 

   variable called lists stores this set of word lists: 

 

        [[attention, deficit], [Star, Trek, Next, Generation], 

         [laughing, out, loud], [International, Business, Machines], 

         [League, of, Legends], [anno, domini], [art, director], 

         [Computer, Science and, Engineering]] 

 

   Each element of this set is a list of values of type String.  You may assume 

   that each list is nonempty and that each string in a list is nonempty. 

 

   Your method should construct a map whose keys are acronyms and whose values 

   are sets of the word lists that produce that acronym.  For example, the call 

   acronyms(lists) should produce the following map: 

 

        {AD=[[attention, deficit], [anno, domini], [art, director]], 

         CSE=[[Computer, Science and, Engineering]], 

         IBM=[[International, Business, Machines]], 

         LOL=[[laughing, out, loud], [League, of, Legends]], 

         STNG=[[Star, Trek, Next, Generation]]} 

 

   Notice that there are 5 unique acronyms produced by the 8 lists in the set. 

   Each acronym maps to a set of the word lists for that acronym.  Your method 

   should not make copies of the word lists; the sets it constructs should 

   store references to those lists.  As in the example above, the keys of the 

   map that you construct should be in sorted order.  You may assume that a 

   working version of acronymFor as described in problem 4 is available for you 

   to use no matter what you wrote for problem 4.  Your method is not allowed 

   to change either the set passed as a parameter or the lists within the set. 



 

7. Comparable class, 20 points.  Define a class called ClockTime that stores 

   information about time of day using a standard clock.  Each ClockTime object 

   keeps track of hours, minutes, and a String to indicate "am" or "pm".  It 

   has the following public methods: 

 

        ClockTime(hours, minutes, amPm)    constructs a ClockTime with given 

                                           hours, minutes and amPm setting 

        getHours()                         returns the hours 

        getMinutes()                       returns the minutes 

        getAmPm()                          returns the am/pm setting 

        toString()                         returns a String representation of 

                                           the time 

   Assume that the values passed to your constructor are legal.  In particular, 

   hours will be between 1 and 12 inclusive, minutes will be between 0 and 59 

   inclusive, and the am/pm parameter will be either the String "am" or the 

   String "pm".  These values should be returned by the various "get" methods. 

 

   The toString method should return a String composed of the hours followed by 

   a colon followed by the minutes (2 digits) followed by a space followed by 

   the am/pm String.  For example, given these declarations: 

 

        ClockTime time1 = new ClockTime(8, 31, "am"); 

        ClockTime time2 = new ClockTime(12, 7, "pm"); 

 

   time1.toString() should return "8:31 am" and time2.toString() should return 

   "12:07 pm".  You must exactly reproduce the format of these examples. 

 

   Your class should implement the Comparable<E> interface with earlier times 

   considered "less."  The earliest time is 12:00 am and the latest time is 

   11:59 pm.  In between the time increases as it would in a standard clock. 

   Keep in mind that 12:59 am is followed by 1:00 am, that 11:59 am is followed 

   by 12:00 pm, and that 12:59 pm is followed by 1:00 pm. 

 

   Write your solution to ClockTime on the next page. 



 

   Write your solution to ClockTime below. 



 

8. Binary Trees, 20 points.  Write a method called makeFull that turns a binary 

   tree of integers into a full binary tree.  A full binary tree is one in 

   which every node has either 0 or 2 children.  Your method should produce a 

   full binary tree by replacing each node that has one child with a new node 

   that has the old node as a leaf where there used to be an empty tree.  The 

   new node should store a value that indicates the level of the tree (-1 for 

   the first level of the tree, -2 for the second level of the tree, and so 

   on).  For example, if a tree called t stores the following: 

               +----+ 

               | 12 | 

               +----+ 

              / 

         +----+ 

         | 29 | 

         +----+ 

   and we make the call: 

        t.makeFull(); 

   then the tree should store the following after the call: 

               +----+ 

               | -1 | 

               +----+ 

              /      \ 

         +----+      +----+ 

         | 29 |      | 12 | 

         +----+      +----+ 

   Notice that the node storing 12 that used to be at the top of the tree is 

   now a leaf where there used to be an empty tree.  In its place at the top of 

   the tree is a new node that stores the value -1 to indicate that it was 

   added at level 1 of the tree.  Your method should perform this operation 

   at every level of the tree.  For example, if t had instead stored: 

                                 +----+ 

                                 | 12 | 

                                 +----+ 

                              /          \ 

                      +----+                +----+ 

                      | 28 |                | 19 | 

                      +----+                +----+ 

                     /                     / 

                +----+                +----+ 

                | 94 |                | 32 | 

                +----+                +----+ 

               /      \                     \ 

          +----+      +----+                +----+ 

          | 65 |      | 18 |                | 72 | 

          +----+      +----+                +----+ 

   then after the call it would store: 

                                  +----+ 

                                  | 12 | 

                                  +----+ 

                               /          \ 

                      +----+                  +----+ 

                      | -2 |                  | -2 | 

                      +----+                  +----+ 

                     /      \                /      \ 

                +----+      +----+      +----+      +----+ 

                | 94 |      | 28 |      | -3 |      | 19 | 

                +----+      +----+      +----+      +----+ 

               /      \                /      \ 

          +----+      +----+      +----+      +----+ 

          | 65 |      | 18 |      | 32 |      | 72 | 

          +----+      +----+      +----+      +----+ 

<continued on next page> 



 

   Notice that two nodes were added at level 2, and one at level 3. 

 

   You are writing a public method for a binary tree class defined as follows: 

 

        public class IntTreeNode { 

            public int data;          // data stored in this node 

            public IntTreeNode left;  // reference to left subtree 

            public IntTreeNode right; // reference to right subtree 

 

            // post: constructs an IntTreeNode with the given data and links 

            public IntTreeNode(int data, IntTreeNode left, IntTreeNode right) { 

                this.data = data; 

                this.left = left; 

                this.right = right; 

            } 

        } 

 

        public class IntTree { 

            private IntTreeNode overallRoot; 

 

            <methods> 

        } 

 

   You are writing a method that will become part of the IntTree class.  You 

   may define private helper methods to solve this problem, but otherwise you 

   may not assume that any particular methods are available.  YOU ARE NOT TO 

   CHANGE THE DATA FIELD OF THE EXISTING NODES IN THE TREE (what we called 

   "morphing" in assignment 8) and you are not to replace any existing nodes. 

   You will, however, construct new nodes containing negative values to be 

   inserted into the tree (notice that there is only one constructor for 

   nodes).  You will also change the links of the tree to restructure the tree 

   as described.  Your solution must run in O(n) time where n is the number of 

   nodes in the tree. 



9. Linked Lists, 20 points.  Write a method of the LinkedIntList class called 

   removeAlternatePairs that removes alternate pairs from a list of numbers, 

   constructing and returning another LinkedIntList that contains the values 

   removed.  For example, suppose that a variable called list stores the 

   following values: 

 

        [1, 2, 3, 4, 5, 6, 7, 8] 

         |  |  |  |  |  |  |  | 

         +--+  +--+  +--+  +--+ 

         pair  pair  pair  pair 

 

   As indicated, this list has four pairs.  If the following call is made: 

 

        LinkedIntList result = list.removeAlternatePairs(); 

 

   then after the call, list and result would store the following values: 

 

        list:   [3, 4, 7, 8] 

        result: [1, 2, 5, 6] 

 

   Notice that the first pair has been moved to the new list, the second pair 

   has not been moved, the third pair has been moved, and the fourth pair has 

   not been moved.  This pattern should be repeated with every other pair from 

   the original list being moved to the new list. 

 

   This example purposely used sequential integers to make the rearrangement 

   clear, but you should not expect that the list will store sequential 

   integers.  It might end with a pair that is to be moved or, as in the 

   example above, it might end with a pair that is not supposed to be moved. 

   It also might end with an extra value that is not part of a pair.  Only 

   complete pairs should be moved to the new list.  For example, if the list 

   had stored this sequence of values: 

 

        [5, 17, 8, 2, 9, 42, 37, 23, 19, -6, -5, 0, 4] 

         |   |  |  |  |   |   |   |   |   |   |  | 

         +---+  +--+  +---+   +---+   +---+   +--+ 

         pair   pair  pair    pair    pair    pair 

 

   then after the call list and result would store the following values: 

 

        list:   [8, 2, 37, 23, -5, 0, 4] 

        result: [5, 17, 9, 42, 19, -6] 

 

   Notice that the final pair of -5 and 0 is not moved but the final value of 4 

   is also not moved because it is not part of a complete pair.  If no pairs 

   are removed, the method should return an empty list. 

 

   You are writing a public method for a linked list class defined as follows: 

 

        public class ListNode { 

            public int data;       // data stored in this node 

            public ListNode next;  // link to next node in the list 

 

            <constructors> 

        } 

  

        public class LinkedIntList { 

            private ListNode front; 

 

            <methods> 

        } 

 

   <continued on next page>



 

   You are writing a method that will become part of the LinkedIntList class. 

   You will need to call the zero-argument LinkedIntList constructor to 

   construct the list to be returned and you may define private helper methods 

   to solve this problem, but otherwise you may not assume that any particular 

   methods are available.  You are allowed to define your own variables of type 

   ListNode, but you may not construct any new nodes, you may not use any 

   auxiliary data structure to solve this problem (no array, ArrayList, stack, 

   queue, String, etc), and your solution must run in O(n) time where n is the 

   number of nodes in the list.  You also may not change any data fields of the 

   nodes.  You MUST solve this problem by rearranging the links of the list. 



CSE143 Cheat Sheet 
 

Linked Lists (16.2) 

Below is an example of a method that could be added to 

the LinkedIntList class to compute the sum of the list: 
public int sum() { 

    int sum = 0; 

    ListNode current = front; 

    while (current != null) { 

        sum += current.data; 

        current = current.next; 

    } 

    return sum; 

} 

Math Methods (3.2)          mathematical operations 

Math.abs(value) absolute value 

Math.min(v1, v2) smaller of two values 

Math.max(v1, v2) larger of two values 

Math.round(value) nearest whole number 

Math.pow(b, e) b to the e power 
 

Two-dimensional Arrays (7.5) 

construct a rectangular array with 4 rows and 6 columns: 
int[][] data = new int[4][6]; 

construct a jagged array with different numbers of columns in each row (3 rows that have 2, 3, and 5 columns): 
int[][] data = new int[3][]; 

data[0] = new int[2]; 

data[1] = new int[3]; 

data[2] = new int[5]; 

Example values: 

data entire array 
data[2] row 2 
data[2][3] value in row 2 and column 3 
data.length number of rows 
data[2].length number of columns in row 2 

Iterator<E> Methods (11.1) (An object that lets you examine the contents of any collection) 

hasNext() returns true if there are more elements to be read from collection 

next() reads and returns the next element from the collection 

remove() removes the last element returned by next from the collection 

List<E> Methods (10.1) (An ordered sequence of values) 

add(value) appends value at end of list 

add(index, value) inserts given value at given index, shifting subsequent values right 
clear() removes all elements of the list 

indexOf(value) returns first index where given value is found in list (-1 if not found) 

get(index) returns the value at given index 

remove(index) removes/returns value at given index, shifting subsequent values left 

set(index, value) replaces value at given index with given value 
size() returns the number of elements in list 
isEmpty() returns true if the list’s size is 0 

addAll(collection) adds all elements from the given collection to the end of the list 

contains(value) returns true if the given value is found somewhere in this list 

remove(value) finds and removes the given value from this list if it is present 

removeAll(list) removes any elements found in the given collection from this list 
iterator() returns an object used to examine the contents of the list 



Set<E> Methods (11.2) (A fast-searchable set of unique values) 

add(value) adds the given value to the set 

contains(value)  returns true if the given value is found in the set 

remove(value)  removes the given value from the set if it is present 
clear() removes all elements of the set 
size() returns the number of elements in the set 
isEmpty() returns true if the set's size is 0 

addAll(collection) adds all elements from the given collection to the set 

containsAll(collection) returns true if set contains every element from given collection 

removeAll(collection) removes any elements found in the given collection from this set 

retainAll(collection) removes any elements not found in the given collection from this set 
iterator() returns an object used to examine the contents of the set 

Map<K, V> Methods (11.3) (A fast mapping between a set of keys and a set of values) 

put(key, value) adds a mapping from the given key to the given value 

get(key) returns the value mapped to the given key (null if none) 

containsKey(key) returns true if the map contains a mapping for the given key 

remove(key) removes any existing mapping for the given key 
clear() removes all key/value pairs from the map 
size() returns the number of key/value pairs in the map 
isEmpty() returns true if the map's size is 0 

keySet() returns a Set of all keys in the map 

values() returns a Collection of all values in the map 

putAll(map) adds all key/value pairs from the given map to this map 

Point Methods (8.1) (an object for storing integer x/y coordinates) 

Point(x, y) constructs a new point with given x/y coordinates 
Point() constructs a new point with coordinates (0, 0) 
getX() returns the x-coordinate of this point 
getY() returns the y-coordinate of this point 

equals(other) returns true if this Point stores the same x/y values as the other 

translate(dx, dy) translates the coordinates by the given amount 

String Methods (3.3) (An object for storing a sequence of characters) 

length() returns the number of characters in the string 

charAt(index) returns  thecharacter at a specific index 

compareTo(other) returns how this string compares to the other 

equals(other) returns true if this string equals the other 
toUpperCase() returns a new string with all uppercase letters 
toLowerCase() returns a new string with all lowercase letters 

startsWith(other) returns true if this string starts with the given text 

substring(start, stop) 
returns a new string composed of character from start index 

(inclusive) to stop index (exclusive) 

Collections Implementations 

List<E> ArrayList<E> and LinkedList<E> 

Set<E> HashSet<E> and TreeSet<E> (values ordered) 

Map<K, V> HashMap<K, V> and TreeMap<K, V> (keys ordered) 
 


	CSE143 Cheat Sheet
	Two-dimensional Arrays (7.5)
	Iterator<E> Methods (11.1) (An object that lets you examine the contents of any collection)
	List<E> Methods (10.1) (An ordered sequence of values)
	Set<E> Methods (11.2) (A fast-searchable set of unique values)
	Map<K, V> Methods (11.3) (A fast mapping between a set of keys and a set of values)
	Point Methods (8.1) (an object for storing integer x/y coordinates)
	String Methods (3.3) (An object for storing a sequence of characters)
	Collections Implementations


