
CSE 143: Computer Programming II Autumn 2021
Take-home Assessment 6: Anagrams due November 18, 2021 11:59pm
This assignment will assess your mastery of the following objectives:

• Implement a well-designed Java class to meet a given specification.
• Implement a recursive backtracking approach to exhaustive search.
• Implement simple optimizations to improve efficiency and avoid unnecessary computation.
• Follow prescribed conventions for code quality, documentation, and readability.

Program Behavior
An anagram is a word or phrase made by rearranging the letters of another word or phrase. For example,
the words “midterm” and “trimmed” are anagrams. If you ignore spaces and capitalization and allow
multiple words, a multi-word phrase can be an anagram of some other word or phrase. For example, the
phrases “Clint Eastwood” and “old west action” are anagrams.
In this assessment, you will create a class called AnagramSolver that uses a dictionary to print all anagram
phrases of a given word or phrase. You will use recursive backtracking to implement your algorithm.

We have provided you with a client program, AnagramMain, that prompts the user for a phrase and then
passes that phrase to your AnagramSolver, which will then print all its anagrams.

AnagramSolver
Your AnagramSolver class should have the following constructor:

public AnagramSolver(List<String> dictionary)

This constructor should initialize a new AnagramSolver object that will use the given list as its
dictionary. You should not change the list in any way. You may assume that the dictionary is a
nonempty collection of nonempty sequences of letters and that it contains no duplicates.
You should “preprocess” the dictionary in your constructor to compute all of the inventories in
advance (once per word).

Your AnagramSolver should also implement the following public method:

public void print(String text, int max)

This method should use recursive backtracking to find combinations of words that have the same
letters as the given string. It should print all combinations of words from the dictionary that are
anagrams of text and that include at most max words (or an unlimited number of words if max is
0) to System.out.
You should throw an IllegalArgumentException if max is less than 0.

Using LetterInventory
An important aspect of the recursive backtracking solutions is separation of the recursive code from the
code that manages low-level details of the problem. Many of the problems we’ve done so far (n-queens,
for example) achieve this separation by using a separate class to manage the state of the current possible
solution. (In n-queens, this was the Board class that tracked where queens were located and whether or
not a placement was safe.)

Page 1 of 6



In this assessment, you will follow a similar strategy. In the anagrams problem, the low-level details
involve keeping track of various letters and figuring out when one group of letters can be formed from
another group of letters. Luckily, the LetterInventory class we implemented in Assessment 1 turns
out to be exactly what we need! You should review the Assesment 1 specification to remind yourself of
the available methods, but you should use our provided implementation of LetterInventory.class or
LetterInventory.jar.

The subtract method of the LetterInventory class is the key to solving this problem. For exam-
ple, if you have a LetterInventory for the phrase “george bush” and ask if you can subtract the
LetterInventory for “bee”, the answer is yes, so subtract would return a non-null result (because
every letter in the “bee” inventory is also in the “george bush” inventory). Since null is not returned,
you need to explore this possibility. The word “bee” alone is not enough to account for all of the letters
of “george bush”, which is why you’d want to work with the new inventory formed by subtracting the
letters from “bee” as you continue the exploration.

Implementation Guidelines
AnagramSolver Constructor
You should “pre-process” the dictionary in your constructor to compute the inventories for each word
in advance (one per word). You’ll want fast access to these inventories as you explore the possible
combinations. As usual, a map will give you fast access. In this problem, we don’t care about the order
of the words in our map, but we do care about speed; so, you should be sure to use HashMap.

print Algorithm
Your print method must produce the anagrams in the same format as in the example execution below.
The easiest way to do this is to build up your answer in a List or Stack. Once you build up a complete
answer in your data structure, you can simply print the structure and it will have the appropriate format.

You are required to solve this problem by using recursive backtracking. In particular, you should write a
recursive method that builds up an answer one word at a time. On each recursive call, you should search
the dictionary from beginning to end and to explore each word that is a match for the current set of
letters. The possible solutions should be explored in dictionary order. That is, you should examine the
words in the same order in which they appear in the dictionary. (Do not make any assumptions about
what that order is.)

�

The given dic-
tionary might
not be sorted
alphabetically!Recursive backtracking is inherently inefficient since it has to explore every possible option. To improve on

this, you will implement one optimization known as “pruning”. For any given phrase, you should reduce
the dictionary to a smaller dictionary of relevant words before you begin your exhaustive search. A word
is relevant if it can be subtracted from the given phrase. In most cases, only a fraction of the dictionary
will be relevant to any given phrase. So, reducing the dictionary before you begin the recursion will allow
you to speed up the searches that happen on each recursive invocation.

To implement this, you should construct a short dictionary for each phrase you are asked to explore that
includes just the words relevant to that phrase. You should do this once before the recursion begins–not
on each recursive call. You may continue to prune this smaller dictionary on each recursive call, but keep
in mind that it is not required and it will make the code more difficult to write. If you decide to prune on
each recursive call, clearly document it.

Development Strategy
We recommend that you start by writing print without the pruning optimization and ignoring max
entirely. Once that works, you should then implement a non-zero max, followed by the zero case once
the non-zero case is working. Finally, you should add pruning after the rest of the behavior works.

Page 2 of 6



Full Example Walk-Through
Suppose we have the following dictionary (eleven.txt):
zebra
one
plus
won
potato
twelve

We ask the program to print all anagrams of the phrase “eleven plus two”:

Step 1: Prune The Dictionary
Not all the words in the dictionary are relevant to the phrase “eleven plus two.” In particular, “potato”
and “zebra” contain letters (“a” and “z”, respectively) that are not in eleven plus two. So, we prune
the dictionary to the following:
one
plus
won
twelve

Step 2: Find The Words
Now that we’ve pruned our dictionary, we know what our word choices are (the remaining words in the
dictionary.) So, we go through our words recursively, keeping track of the unused letters at each step:

[eeellnopstuvw]

[elnopsu]

...

[eeellpstuv]

...

[eeelnotvw]

[eno]

...

[eeeltv]

...

bad[eeltvw]

...

one plus won twelve

[eellpstuvw]

[lpsu]

badbad[]

one twelve plus

bad

one plus won twelve

bad[eeltvw]

[]

one plus twelve

badbadbad

one plus won twelve

bad

one plus won twelve

one plus won twelve

Example Execution
Welcome to the cse143 anagram solver.

What is the name of the dictionary file? eleven.txt

phrase to scramble (return to quit)? eleven plus two
Max words to include (0 for no max)? 0
[one, plus, twelve]
[one, twelve, plus]
[plus, one, twelve]
[plus, twelve, one]
[twelve, one, plus]
[twelve, plus, one]

phrase to scramble (return to quit)?

Page 3 of 6



Hints and Tips
Use The Provided Dictionary
The constructor for your class is passed a reference to a dictionary stored as a List of String objects.
You can use this dictionary for your own object as long as you don’t change it. In other words, you don’t
need to make your own independent copy of the dictionary as long as you don’t modify the one that is
passed to you in the constructor.

Handling When max is Zero
You may not make any assumptions about the length of the input or output when handling the case when
max is 0 in the print method. In particular, do NOT try and simply search for all anagrams where the
number of words is smaller then some arbitrary number since then there is no guarantee your output will
always be correct (no matter how large an artificial limit you choose).

Let Exhaustive Search Do Its Job
Don’t make this problem harder than it needs to be. You are doing an exhaustive search of all the
possibilities. You have to avoid dead ends, and you have to implement the optimization listed above,
but otherwise you are exploring every possibility. For example, in the example execution you will see that
one solution for “eleven plus two” is [one, plus, twelve]. Because this is found as a solution, you know
that every other permutation of these words will also be included ([one, twelve, plus], [plus, twelve, one],
etc.). But you don’t have to (and should not) write any special code to make that work. This is a natural
result of the exhaustive nature of the search. It will locate each of these possibilities and print them out
when they are found. Similarly, you don’t need any special cases for words that have already been used.
If someone asks you for the anagrams of “bar bar bar”, you should include [bar, bar, bar] as an answer.

Testing Pruning
While developing your program, you can verify that pruning is working by printing the size of the original
dictionary and the pruned dictionary. This should be doable by hand for the eleven.txt dictionary. And,
for example, when processing “george bush” on dict1.txt, you go from a dictionary size of 56 to a
pruned size of 31.

Output Limits
Sometimes this program produces a lot of output. When you run it in jGRASP, it will display just 500
lines of output. If you want to see more, go to the Build menu and select the “Run in MSDOS Window”
option. Then when the window pops up, right-click on the title bar of the window, select Properties, and
under the “Layout” tab you should be able to adjust the “Screen Buffer Size” Height to something higher
(like 9999 lines).

Ed also limits the amount of output, but this limit cannot be changed. Therefore, we strongly recommend
you test your code in jGRASP before submitting.

Code Quality Guidelines
In addition to producing the behavior described above, your code should be well-written and meet all
expectations described in the grading guidelines, Code Quality Guide, and Commenting Guide. For this
assessment, pay particular attention to the following elements:

Recursive Approach
Be sure to implement your recursive backtracking following the guidelines discussed in class. Avoid
repeating computations that you don’t need to and exploring branches that you know will never be
printed. Don’t create special cases in your recursive code if they are not necessary. Avoid repeated logic
as much as possible.

Page 4 of 6

https://courses.cs.washington.edu/courses/cse143/21au/syllabus/#take-home-assessment-grading
https://courses.cs.washington.edu/courses/cse143/21au/resources/code_quality/
https://courses.cs.washington.edu/courses/cse143/21au/resources/143CommentingGuide.pdf


Avoid Redundancy
Create “helper” method(s) to capture repeated code. As long as all extra methods you create are private
(so outside code cannot call them), you can have additional methods in your class beyond those specified
here. If you find that multiple methods in your class do similar things, you should create helper method(s)
to capture the common code.

Generic Structures
You should always use generic structures. If you make a mistake in specifying type parameters, the
Java compiler may warn you that you have “unchecked or unsafe operations” in your program. If you
use jGRASP, you may want to change your settings to see which line the warning refers to. Go to
Settings/Compiler Settings/Workspace/Flags/Args and then uncheck the box next to “Compile”
and type in: -Xlint:unchecked

Data Fields
Properly encapsulate your objects by making data your fields private. Avoid unnecessary fields; use
fields to store important data of your objects but not to store temporary values only used in one place.
Fields should always be initialized inside a constructor or method, never at declaration.

Exceptions
The specified exceptions must be thrown correctly in the specified cases. Exceptions should be thrown
as soon as possible, and no unnecessary work should be done when an exception is thrown. Exceptions
should be documented in comments, including the type of exception thrown and under what conditions.

Commenting
Each method should have a header comment including all necessary information as described in the
Commenting Guide. Comments should be written in your own words (i.e. not copied and pasted from
this spec) and should not include implemenation details.

Running and Submitting
If you believe your behavior is correct, you can submit your work by clicking the "Mark" button in the Ed
assessment. You will see the results of some automated tests along with tentative grades. These grades
are not final until you have received feedback from your TA.

You may submit your work as often as you like until the deadline; we will always grade your most recent
submission. Note the due date and time carefully—work submitted after the due time will not be
accepted.

Getting Help
If you find you are struggling with this assessment, make use of all the course resources that are available
to you, such as:

• Reviewing relevant examples from class
• Reading the textbook
• Visiting support hours
• Posting a question on the message board

Collaboration Policy
Remember that, while you are encouraged to use all resources at your disposal, including your classmates,
all work you submit must be entirely your own. In particular, you should NEVER look at a solution
to this assessment from another source (a classmate, a former student, an online repository, etc.). Please

Page 5 of 6

https://courses.cs.washington.edu/courses/cse143/21au/resources/143CommentingGuide.pdf
https://courses.cs.washington.edu/courses/cse143/21au/
https://courses.cs.washington.edu/courses/cse143/21au/support_hours/
https://edstem.org/us/courses/13856/discussion/


review the full policy in the syllabus for more details and ask the course staff if you are unclear on whether
or not a resource is OK to use.

Reflection
In addition to your code, you must submit answers to short reflection questions. These questions will
help you think about what you learned, what you struggled with, and how you can improve next time.
The questions are given in the file AnagramSolverReflection.txt in the Ed assessment; type your
responses directly into that file.

Page 6 of 6

https://courses.cs.washington.edu/courses/cse143/21au/syllabus/#academic-honesty-and-collaboration

