
CSE 143: Computer Programming II Autumn 2021
A1: Letter Inventory (due Thursday, October 7, 2021 at 11:59 pm)
This assignment will assess your mastery of the following objectives:

• Implement a well-designed Java class to meet a given specification.

• Maintain proper abstraction between the client and implementation of a class.

• Follow prescribed conventions for code quality, documentation, and readability.

Overview
In this assessment, you will implement a class called LetterInventory that can be used to keep track of
an inventory of letters of the English alphabet. The constructor for the class will take a String as a
parameter and compute how many of each letter are in that String (i.e. how many as, how many bs,
etc.). LetterInventory ignores any character that is not an English letter (such as punctuation or digits)
and treats upper- and lowercase letters as the same.

Constructors
The LetterInventory class should have the following two constructors:

�

Be careful to
remove redun-
dancy between
the construc-
tors.

public LetterInventory()

Constructs an empty inventory (all counts are 0).

public LetterInventory(String data)

Constructs an inventory (a count) of the alphabetic letters in data (the given string). Uppercase and
lowercase letters should be treated as the same. All non-alphabetic characters should be ignored.

Methods
The LetterInventory class should have the following public methods:

�

Don’t forget to
comment your
exceptions!

public int get(char letter)

Returns a count of how many of the given letter (case-insensitive) are in this inventory. If a nonal-
phabetic character is passed, your method should throw an IllegalArgumentException.

public void set(char letter, int value)

Sets the count for the given letter (case-insensitive) to the given value. If a non-alphabetic char-
acter is passed or if value is negative, your method should throw an IllegalArgumentException.

�

Avoid re-
computation
by saving the
appropriate
value(s).

public int size()

Returns the sum of all of the counts in this inventory. This operation should be “fast” in the sense
that it should store the size rather than computing it each time the method is called.

public boolean isEmpty()

Returns true if this inventory is empty (all counts are 0). This operation should be “fast” in the
sense that it shouldn’t loop over the array each time the method is called.

1



public String toString()

Returns a String representation of the inventory with all the letters in lowercase, in sorted order, and
surrounded by square brackets. The number of occurrences of each letter should match its count in
the inventory. For example, an inventory of 4 a’s, 1 b, 1 `, and 1 m would be represented as

“[aaaablm]”

public LetterInventory add(LetterInventory other)

Constructs and returns a new LetterInventory object that represents the sum of this
LetterInventory and the other given LetterInventory. The counts for each letter should
be added together. The two LetterInventory objects being added together (this and other)
should not be changed by this method.

Below is an example of how the add method might be called:
1 LetterInventory inventory1 = new LetterInventory("George W. Bush");
2 LetterInventory inventory2 = new LetterInventory("Hillary Clinton");
3 LetterInventory sum = inventory1.add(inventory2);

The first inventory would correspond to [beegghorsuw], the second would correspond to
[achiilllnnorty] and the third would correspond to [abceegghhiilllnnoorrstuwy].

�

add and sub-
tract should
not change the
existing Letter
Inventory.
They should
create new ones
instead.

public LetterInventory subtract(LetterInventory other)

Constructs and returns a new LetterInventory object that represents the difference of this letter
inventory and the other given LetterInventory. The counts from the other inventory should
be subtracted from the counts of this one. The two LetterInventory objects being subtracted
(this and other) should not be changed by this method. If any resulting count would be negative,
your method should return null.

Below is an example of how the subtract method might be called:
1 LetterInventory inventory1 = new LetterInventory("Hello world!");
2 LetterInventory inventory2 = new LetterInventory("owl");
3 LetterInventory difference = inventory1.subtract(inventory2);

The first inventory would correspond to [dehllloorw], the second would correspond
to [olw] and the third would correspond to [dehllor]. If instead we called
inventory2.subtract(inventory1), it would return null.

Implementation Guidelines
You should implement this class with an array of 26 counters (one for each letter) along with any other
data fields you find that you need. Remember, though, that we want to minimize the number of data
fields when possible.

Your class should avoid unnecessary inefficiencies. For example, you might be tempted to implement the
add method by calling the toString method or otherwise building a String to pass to the LetterInventory
constructor. But this approach would be inefficient for inventories with large character counts.

You should introduce a class constant for the value 26 to improve readability.

2



Character operations
It will be helpful to understand certain deatils of the char datatype for this assessment. Many of these
details are explained in section 4.3 of the textbook.
Values of type char have corresponding integer values. There is a character with value 0, a character
with value 1, a character with value 2 and so on. You can compare different values of type char using
less-than and greater-than tests, as in:

1 if (ch >= 'a') {
2 ...
3 }

All of the lowercase letters appear grouped together in type char (‘a’ is followed by ‘b’ followed by ‘c’,
and so on), and all of the uppercase letters appear grouped together in type char (‘A’ followed by ‘B’
followed by ‘C’ and so on). Because of this, you can compute a letter’s displacement (or distance) from
the letter ‘a’ with an expression like the following (this expression assumes the variable letter is of type
char and stores a lowercase letter):

letter - 'a'

Going in the other direction, if you know a char’s integer equivalent, you can cast the result to char
to get the character. For example, suppose that you want to get the letter that is 8 away from ‘a’. You
could say:

char result = (char) ('a' + 8);

This assigns the variable result the value ‘i’. As in these examples, you should write your code for
LetterInventory in terms of displacement from a fixed letter like ‘a’ rather than including the specific
integer value of a character.

Hints
Thought it may not seem like it, the ArrayIntList example from class provides a good model to use for
implementing LetterInventory. Pay particular attention to the use of fields, avoiding reimplementation
of common functionality, throwing exceptions in error conditions, and documentation/comments.

String and Character
You probably want to look at the String and Character classes for useful methods (e.g., there is
a toLowerCase method in each). You will have to pay attention to whether a method is static or
not. The String methods are mostly instance methods, because Strings are objects. The Character
methods are all static, because char is a primitive type. For example, assuming you have a variable
called s that is a String, you can turn it into lowercase by saying:

s = s.toLowerCase();

This is a call on an instance method where you put the name of the object first. But chars are not
objects and the toLowerCase method in the Character class is a static method. So, assuming you have
a variable called ch that is of type char, you’d turn it to lowercase by saying:

ch = Character.toLowerCase(ch);

3



Development Strategy
The best way to write code is in stages. If you attempt to write everything at once, it will be significantly
more difficult to debug, because any bugs are likely not isolated to a single place. The technical term
for this development style is “iterative enhancement” or “stepwise refinement.” It is also important to be
able to test the correctness of your solution at each different stage.
We suggest that you work on your assessment in three stages:

(1) First, work on constructing a LetterInventory and examining its contents. We will implement the
constructors, the size method, the isEmpty method, the get method, and the toString method.
Even within this stage, you should develop the methods slowly. First work on the constructor and
size methods. Then add the isEmpty method, then the get method, then the toString method.

(2) Next, add the set method to the class that allows the client to change the number of occurrences
of an individual letter.

(3) Finally, include the add and subtract methods. We recommend writing the add method first and
making sure it works, then moving on to the subtract method.

Code Quality Guidelines and Grading
In addition to producing the desired behavior, your code should be well-written and meet all expectations
described in the grading guidelines, Code Quality Guide, and Commenting Guide. For this assessment,
pay particular attention to the following elements:

Data Fields
Properly encapsulate your objects by making data your fields private. Avoid unnecessary fields; use
fields to store important data of your objects but not to store temporary values only used in one place.
Fields should always be initialized inside a constructor or method, never at declaration.

�

Do not add
extra pub-
lic methods.
Helper meth-
ods should be
private

Exceptions
The specified exceptions must be thrown correctly in the specified cases. Exceptions should be thrown
as soon as possible, and no unnecessary work should be done when an exception is thrown. Exceptions
should be documented in comments, including the type of exception thrown and under what conditions.

Commenting
Each method should have a header comment including all necessary information as described in the
Commenting Guide. Comments should be written in your own words (i.e. not copied and pasted from
this spec) and should not include implemenation details.

Running and Submitting
If you believe your behavior is correct, you can submit your work by clicking the "Mark" button in the Ed
assessment. You will see the results of some automated tests along with tentative grades. These grades
are not final until you have received feedback from your TA.

You may submit your work as often as you like until the deadline; we will always grade your most recent
submission. Note the due date and time carefully - work submitted after the due time will not be
accepted.

4

https://courses.cs.washington.edu/courses/cse143/21au/syllabus/#take-home-assessment-grading
https://courses.cs.washington.edu/courses/cse143/21au/resources/code_quality/
https://courses.cs.washington.edu/courses/cse143/21au/resources/143CommentingGuide.pdf
https://courses.cs.washington.edu/courses/cse143/21au/resources/143CommentingGuide.pdf


Getting Help
If you find you are struggling with this assessment, make use of all the course resources that are available
to you, such as:

• Reviewing relevant examples from class

• Reading the textbook

• Visiting support hours

• Posting a question on the discussion board

Collaboration Policy
Remember that, while you are encouraged to use all resources at your disposal, including your classmates,
all work you submit must be entirely your own. In particular, you should NEVER look at a solution
to this assessment from another source (a classmate, a former student, an online repository, etc.). Please
review the full policy in the syllabus for more details on what types of collaboration are encouraged.
Please ask the course staff if you are unclear on whether or not a resource is OK to use.

Reflection
In addition to your code, you must submit answers to short reflection questions. These questions will
help you think about what you learned, what you struggled with, and how you can improve next time.
The questions are given in the file LetterInventoryReflection.txt in the Ed assessment; type your
responses directly into that file.

5

https://courses.cs.washington.edu/courses/cse143/21au/#calendar-row-09-29
https://courses.cs.washington.edu/courses/cse143/21au/support_hours/
https://edstem.org/us/courses/13856/discussion/
https://courses.cs.washington.edu/courses/cse143/21au/syllabus/#academic-honesty-and-collaboration

