Building Java Programs

Chapter 13
binary search and complexity

reading: 13.1-13.2

10/67/ 2018

Do6s sPOTED THIS WEEKEN D Commung,

|

‘ |

P R
B T
B
.:t\

WAITIN G PATIE)«rrL‘/ LITTLE WEENIE, Too'
FAR AWAY

CS Concepts

Client/Implementer

Data Structures

Lists
Stacks
Queues
Sets

Road Map

Java Language
« EXxceptions

« Interfaces

« References

Java Collections
Arrays

ArrayList &
LinkedList &

Stack

TreeSet

HashSet

Sum this up for me

o Let’s write a method to calculate the sum from 1 to some n

il oX B E S e RN o e R seR S HO N 8 M M B R B a1 B |

R S H A Bt i O
R A Rk S = B e R T S
S =

}

e A SR

* Gauss also has a way of solving this
PO S Ea T e By S A CEnA)
e T e I e

e Which one is more efficient?

e

~ Runtime Efficiency (13.2)

o efficiency: measure of computing resources used by code.
can be relative to speed (time), memory (space), etc.
most commonly refers to run time

* We want to be able to compare different algorithms to see
which is more efficient

e Let's time the methods!

=1

= b

= 10

= 100

e GRg Y

= 10,000,000

= 100,000,000

= 2,147,483,647

R IR P B I A LR S R)
|

e Downsides

Different computers give different run times

suml
suml
suml
suml
suml
suml
suml

suml

took
took
ook
took
took
took
took

Efficiency Try 1

Oms,
Oms,
Oms,
Oms,

Oms,

18ms,
123¥ms,

took 1888ms,

e

sum?2
sum?2
sum?2
sum?2
sum?2
sum?2
sum?2

sum?’

The same computer gives different results!!! D: <

took
took
took
took
took
took
took
took

Oms
Oms
Oms
Oms
Oms
Oms
Oms

Oms

Efficiency — Try 2

* Count number of “simple steps” our algorithm takes to run
* Assume the following:
Any single Java statement takes same amount of time to run.

NN) D G D 1
N BN B I == G O YA AN MY ks v e e Yo ey SOl Mo s o
s oS Eenmv oy pElnn e He koo

A loop's runtime, if the loop repeats N times, is N times the
runtime of the statements in its body.

A method call's runtime is measured by the total runtime of
the statements inside the method's body.

g

pliblsles saaivie e diaiie P il DRI

statementl;

statement2; 3
statement3;

NG A AV e v v S BV S N A et)

statement4;

{

{
N
}

For (int 1 = 13 <= N di++) | %
statement5;
statement6; ~ 3N
statement?;

| 2

T

Efficiency examples

-

>4N+3

Efficiency examples 2

Dbl es sieasate el e e e N e

g

@ e e o W R oS e (et N B B N Ve \

ForiaCint ga=nile i nNCea Byl 5
statementl; (o N

}

} Ry

G e R e A N e N e U il i >N2 + 4N
statement2?;
statement3; >~ 4N
statement4;
statement5;

} o

) .

* How many statements will execute if N = 10? If N = 10007

~NI40 ed TS Fw

Sum this up for me

o Let’s write a method to calculate the sum from 1 to some n

g

bl XN BNt e N iak sVt ol g 1Y iBE css o] e
Pt e }-1
@] 53 2 A B s 0 i B < R o e) ALV
sum += 1i; }N >N+2
}
return sum; }-1
} =

* Gauss also has a way of solving this
PO e S T e ST By S A CENAZ)

{
e T e I e }'1 }1

e Which one is more efficient?
10

Visualizing Difference

Comparing sum1 and sum?2

Number of steps

125 - sum’i

- 5um2
100
75
50
25
]

20 40 &0 80 100

Tk

e

s

Algorithm growth rates (13.2)

* We measure runtime in proportion to the input data size, N.
growth rate: Change in runtime as N changes.

e Say an algorithm runs 8-4N3 +25N2>~8N+17
statements.

Consider the runtime when N is extremely large .

We ignore constants like 25 because they are tiny next to N.
The highest-order term (N3) dominates the overall runtime.

We say that this algorithm runs "on the order of" N3.
or O(N3) for short ("Big-Oh of N cubed")

TF qon dotbly input, will Rhe aboul 8x as [on\)

12

D or

@ Poll Everywhere pollev.com/csel43

e Suppose our list had the contents

publiervoddymethod (i vy
int value = 0; |
| o s MM QR s p e O e A T A B A e

S S A N Y e A v L ety A A e A o0 In
value += j; \%V\’% 7%"'9\
}
}

8 B 2 A T o T U = oWl e AR AR ke

}
» What is the Big-0O efficiency for this function?

.« O(1)

e O(N\/
o OtAH
o Om?ﬁr);

- O(n?)
* O(n3)

13

Complexity classes

» complexity class: A category of algorithm efficiency
based on the algorithm's relationship to the input size N.

i

Class Big-Oh If you double N, ... Example
constant O(1) unchanged 10ms
logarithmic O(log, N) increases slightly 175ms
linear O(N) doubles 3.2 sec
log-linear O(N log, N) | slightly more than doubles 6 sec
quadratic O(N?) quadruples 1 min 42 sec
cubic O(N3) multiplies by 8 55 min
exponential o(2N) multiplies drastically 5 * 1081 years

Complexity classes

1000 = 0(1)

= 0O(logn)
= 0(n)

= O(nlogn)
- 0(n"2)
= 0(2"n)
750 = 0o(n!)

500

Operations

250

20 40 60 80 100

http://recursive-design.com/blog/2010/12/07/comp-sci-101-big-o-notation/ - post about a Google interview 4537

http://recursive-design.com/blog/2010/12/07/comp-sci-101-big-o-notation/

Sequential search

» sequential search: Locates a target value in an array /
list by examining each element from start to finish. Used in
R

How many elements will it need to examine?

Example: Searching the array below for the value 42:

index| 0 |12 |3|4|5|6|7]|8|9|10(11|12({13|14(15] 16
value | -4 2|7 (10]15/20(22|25|30|36|42|50|56|68|85|92|103

23

* What is its complexity class?

publyaintindexOfint svaluc)

{

Ry

Sequential search

Forvtintiiy="0r dv<isliger arr)ad o
if (elementDatal[i] == wvalue) {
return i;
} :
}
R S £ Y e N .
}
index| 01112 |3(4|5|6|7[8]9|10|11|12|13(14|15]| 16
value| -4 (2| 7 (1011520122 |25(30|36(42|50|56|68|85(92|103

* On average, "only" N/2 elements are visited
1/2 is a constant that can be ignored

e

Binary search (13.1)

* binary search: Locates a target value in a sorted array or
list by successively eliminating half of the array from
consideration.

How many elements will it need to examine?

Example: Searching the array below for the value 42:

index| 0 11|2(3(4|5|6|7|8|9[10(11|12|13(14|15]| 16

value | -4 2|7 (10]15/20(22|25|30|36|42|50|56|68|85|92|103

min mid max

25

Binary search

e binary search successively eliminates half of the

elements.

Algorithm: Examine the middle element of the array.

- If it is too big, eliminate the right half of the array and repeat.

- If it is too small, eliminate the left half of the array and repeat.
- Else it is the value we're searching for, so stop.

Which indexes does the algorithm examine to find value 427

What is the runtime complexity class of binary search?

index| 0|12 |3|4|5(6|7|18]|9]10(11(12|13(14|15]| 16
value|-412 |7 (10(15(20|22|25|30|36(42|50(56|68|85|92|103
min mid max

Binary search runtime

* For an array of size N, it eliminates 2 until 1 element
remains.
N, N/2, N/4, N/S8, ..., 4, 2, 1

I e R T

How many divisions does it take?

e Think of it from the other direction:
How many times do I have to multiply by 2 to reach N?

1,2,4,8, ..., N/4, N/2, N
Call this number of multiplications "x".

)Z(X: |I\Iog2 N O(QOJ,*V\)

e Binary search is in the logarithmic complexity class.

29

Complexity classes

1000 = 0(1)

= 0O(logn)
= 0(n)

= O(nlogn)
- 0(n"2)
= 0(2"n)
750 = 0o(n!)

500

Operations

250

20 40 60 80 100

http://recursive-design.com/blog/2010/12/07/comp-sci-101-big-o-notation/ - post about a Google interview 30

http://recursive-design.com/blog/2010/12/07/comp-sci-101-big-o-notation/

e

Collection efficiency

e Efficiency of our Java's ArrayList and LinkedList methods:

Method ArrayList | LinkedList
add O(1)* O(1)
add (index, value) O(N) O(N)
indexOf O(N) O(N)
get O(1) O(N)
remove O(N) O(N)
set O(1) O(N)
o(1) o(1)

* Most of the time!

Wil coner Wed

ik

Ry

/

Throw Back: Unique words

» Recall two weeks ago when we counted the number of
unique words in a file. Our first attempt

public static i1nt uniqueWords (Scanner 1nput) {

Ly st ostring> words — mewlinnkediil b st rangz i)

while (1nput.hasNext()) {
String word = input.next();
TE i e doEeamitaaamsalynorr el Jiaed

words.add (word) ;

}

return words.size () ;

32

Ry

P e

Throw Back: Unique words

» Recall two weeks ago when we counted the number of
unique words in a file. Our second attempt

* We saw briefly that operations on HashsSet are O(1)

public static 1nt uniqueWords (Scanner 1nput) {
Set<String> words = new HashSet<String> () ;
while (i1nput.hasNext()) {
String word = input.next();
words.add (word) ;

}

return words.size () ;

35

