Building Java Programs

Chapter 14
stacks and queues

reading: 14.1-14.4




Warm up! pollev.com/csel43




e

~ Abstract data types (ADTSs)

* abstract data type (ADT): A specification of a collection
of data and the operations that can be performed on it.

Describes what a collection does, not how it does it

* We don't know exactly how a the collections is
implemented, and we don't need to.

We just need to understand the idea of the collection and what
operations it can perform



Stacks and queues

* Some collections are constrained so clients can only use
optimized operations

stack: retrieves elements in reverse order as added
queue: retrieves elements in same order as added

push \ / pop, peek
front back
remove, peek
top| 3 = R 2 3 . add
2
pottom| 1 Sl

stack



Stack Example
S L

push

pPop

bottom




Stacks

» stack: A collection based on the principle of adding
elements and retrieving them in the opposite order.
Last-In, First-Out ("LIFO") 2

Elements are stored in order of insertion.
- We do not think of them as having indexes.

Client can only add/remove/examine
the last element added (the "top"). push pop, peek

* basic stack operations:

push: Add an element to the top. top| 3
pop: Remove the top element. 5
peek: Examine the top element.

bottom 1
stack




e

I e R T

Stacks in computer science

* Programming languages and compilers:
method calls are placed onto a stack (call=push, return=pop)
compilers use stacks to evaluate expressions

return var

. . j meth0d3 local vars

e Matching up related pairs of things: i
find out whether a string is a palindrome method2 | peares

1 H 1 1 return var

examine a file to see if its braces { } match bl ol vry

convert "infix" expressions to pre/postfix

e Sophisticated algorithms:
searching through a maze with "backtracking"
many programs use an "undo stack" of previous operations



g
Class stack

Stack<E> () |constructs a new stack with elements of type E

push (value) | places given value on top of stack

pop () removes top value from stack and returns it;
throws EmptyStackException if stack is empty

peek () returns top value from stack without removing it;
throws EmptyStackException if stack is empty

sere () returns number of elements in stack

isEmpty () returns true if stack has no elements

Stack<String> s = new Stack<String>();

e NB R AT LMD
SeplshaCT o
SepuEs e Ty

// bOttOm [nan’ "b", "C"] tOp

Syotem et printin s pop ) /) el

Stack has other methods that are off-limits (not efficient)



Queue Example

remove

—

13



Queues

* queue: Retrieves elements in the order they were added.

First-In, First-Out ("FIFO")
Elements are stored in order of
insertion but don't have indexes.

Client can only add to the end of the

queue, and can only examine/remove

the front of the queue.

remove, peek

«—

* basic queue operations:

queue

add (enqueue): Add an element to the back.
remove (dequeue): Remove the front element.

peek: Examine the front element.

14



e

I e R T

Queues in computer science

* Operating systems:
queue of print jobs to send to the printer
queue of programs / processes to be run
queue of network data packets to send

* Programming:
modeling a line of customers or clients
storing a queue of computations to be performed in order

e Real world examples:
people on an escalator or waiting in a line
cars at a gas station (or on an assembly line)

15



Ry

~ Programming with Queues

add (value) | places given value at back of queue
remove () removes value from front of queue and returns it;
throws a NoSuchElementException if queue is empty
peek () returns front value from queue without removing it;
returns null if queue is empty
b A returns number of elements in queue
isEmpty () |returns true if queue has no elements

Quenes mbege > —peny inkediEEEKInteger>();

g.add (42) ;
Gaaddit=3%:;
R Tare

Ll

// front [42, -3, 17] back

System.out.println(g.remove ()); // 42

IMPORTANT: When constructing a queue you must use a
new LinkedList object instead of a new Queue object.

- This is because Queue is an interface

16



