
Building Java Programs

Chapter 14

stacks and queues

reading: 14.1-14.4

2

Warm up! pollev.com/cse143

3

Abstract data types (ADTs)
 abstract data type (ADT): A specification of a collection

of data and the operations that can be performed on it.

 Describes what a collection does, not how it does it

 We don't know exactly how a the collections is
implemented, and we don't need to.

 We just need to understand the idea of the collection and what
operations it can perform

4

Stacks and queues
 Some collections are constrained so clients can only use

optimized operations

 stack: retrieves elements in reverse order as added

 queue: retrieves elements in same order as added

stack

queue

top 3

2

bottom 1

pop, peekpush

front back

1 2 3
addremove, peek

5

Stack Example

push pop

bottom

top

6

Stacks
 stack: A collection based on the principle of adding

elements and retrieving them in the opposite order.

 Last-In, First-Out ("LIFO")

 Elements are stored in order of insertion.

 We do not think of them as having indexes.

 Client can only add/remove/examine
the last element added (the "top").

 basic stack operations:

 push: Add an element to the top.

 pop: Remove the top element.

 peek: Examine the top element.

stack

top 3

2

bottom 1

pop, peekpush

7

Stacks in computer science
 Programming languages and compilers:

 method calls are placed onto a stack (call=push, return=pop)

 compilers use stacks to evaluate expressions

 Matching up related pairs of things:

 find out whether a string is a palindrome

 examine a file to see if its braces { } match

 convert "infix" expressions to pre/postfix

 Sophisticated algorithms:

 searching through a maze with "backtracking"

 many programs use an "undo stack" of previous operations

method3
return var
local vars
parameters

method2
return var
local vars
parameters

method1
return var
local vars
parameters

8

Class Stack

Stack<String> s = new Stack<String>();

s.push("a");

s.push("b");

s.push("c"); // bottom ["a", "b", "c"] top

System.out.println(s.pop()); // "c"

 Stack has other methods that are off-limits (not efficient)

Stack<E>() constructs a new stack with elements of type E

push(value) places given value on top of stack

pop() removes top value from stack and returns it;
throws EmptyStackException if stack is empty

peek() returns top value from stack without removing it;
throws EmptyStackException if stack is empty

size() returns number of elements in stack

isEmpty() returns true if stack has no elements

13

Queue Example

add

remove

front back

14

Queues
 queue: Retrieves elements in the order they were added.

 First-In, First-Out ("FIFO")

 Elements are stored in order of
insertion but don't have indexes.

 Client can only add to the end of the
queue, and can only examine/remove
the front of the queue.

 basic queue operations:

 add (enqueue): Add an element to the back.

 remove (dequeue): Remove the front element.

 peek: Examine the front element.

queue

front back

1 2 3
addremove, peek

15

Queues in computer science
 Operating systems:

 queue of print jobs to send to the printer

 queue of programs / processes to be run

 queue of network data packets to send

 Programming:

 modeling a line of customers or clients

 storing a queue of computations to be performed in order

 Real world examples:

 people on an escalator or waiting in a line

 cars at a gas station (or on an assembly line)

16

Programming with Queues

Queue<Integer> q = new LinkedList<Integer>();

q.add(42);

q.add(-3);

q.add(17); // front [42, -3, 17] back

System.out.println(q.remove()); // 42

 IMPORTANT: When constructing a queue you must use a
new LinkedList object instead of a new Queue object.

 This is because Queue is an interface

add(value) places given value at back of queue

remove() removes value from front of queue and returns it;
throws a NoSuchElementException if queue is empty

peek() returns front value from queue without removing it;
returns null if queue is empty

size() returns number of elements in queue

isEmpty() returns true if queue has no elements

