CSE 142 vs CSE 143

CSE 142 / AP CS A
- You learned how to write programs and decompose large problems with:
 - Print statements
 - Methods
 - Control Structures
 - loops, if/else
 - File I/O
 - Arrays
 - Objects

CSE 143
- Return of the objects
- You learned to solve more complex tasks efficiently
 - Data structures to organize and model data
 - Algorithms for solving common tasks
 - More advanced language features
- Abstractions are important!
Road Map

CS Concepts
- Client/Implementer
- Efficiency
- Recursion
- Regular Expressions
- Grammars
- Searching / Sorting
- Backtracking
- Hashing
- Huffman Compression

Java Language
- Exceptions
- Interfaces
- References
- Comparable
- Generics
- Inheritance / Polymorphism
- Abstract Classes

Data Structures
- Lists
- Stacks
- Queues
- Sets
- Maps
- Priority Queues

Java Collections
- Arrays
- ArrayList
- LinkedList
- Stack
- TreeSet / TreeMap
- HashSet / HashMap
- PriorityQueue
Major themes

- Abstraction
 - Leverage existing components without understanding details
 - Create components that can be used as black boxes

- Problem solving
 - Decomposing a large problem into smaller ones

- Design tradeoffs
 - Algorithm analysis - scalability and growth
 - Keeping code easy to read for maintainability

- Recursion
 - Reason about problems in terms of self-similarity
 - Write very short code to achieve complex behaviors
What project?

- Add a GUI to the random sentence generator
- Automate chemistry, physics, calculus problems, etc
 - Maybe even automate writing code with good style?
- Find quotes by keyword in books
- What are you currently doing that a computer could do?
- List of some project ideas
What language?

- Expanding your Java knowledge with a project is valuable

- Pick a project, see what similar projects use!
 - iOS: Swift
 - Android: Java, Kotlin
 - Client-side web: Javascript (many frameworks to choose from)
 - Beautiful visuals: Processing
 - Data Processing + Machine Learning: Python
 - Data Management: SQL
 - Embedded systems: C / C++

- Learn a new programming paradigm
 - Functional languages: Racket, Haskell, Scala, (now, Java 8!)
Leveraging existing code
Here are just a FEW examples. There is so much more!

- Processing language
- Building games
 - http://lwjgl.org/
 - http://jbox2d.org/ (with physics!)
- Processing biological data
 - http://biojava.org/wiki/Main_Page
- Accessing Facebook data
 - http://restfb.com/
- Making music
 - http://www.jfugue.org/
Courses?

- **CSE non-majors**
 - CSE 154: Web Programming
 - CSE 163: Intermediate Data Programming (Python)
 - CSE 373: Data Structures and Algorithms
 - CSE 374: Programming Concepts and Tools (C/C++, Linux, ...)
 - CSE/STAT 416: Machine learning (requires STAT 311 or 390)
 - CSE 131: Digital Photography
 - CSE 460: Animation Capstone (open to all majors)
 - And more!

- **CSE majors**
 - CSE 311: (Mathematical) Foundations of Computing
 - CSE 332: Data Abstractions (Data Structures and Algorithms)
 - CSE 331: Software Design and Implementation
 - CSE 341: Programming Languages
 - CSE 344: Intro to Data Management (and databases)
 - CSE 351: Hardware/Software Interface
 - And more!

- INFO, AMATH, HCDE, DXARTS, ...
Beyond programming

- Investigate how to best distribute relief funds
- Digitize basketball players
- Help deaf/hard-of-hearing people identify sounds
- Detect and prevent toxicity online
- Recognize disinformation online
- Make movies
- Improve digital collaboration
- Design algorithms that are more fair and better respect privacy
- Fix Olympic badminton
- And so much more!
Weekly meetings

- **Change** – technologies for low-income regions
- **Dub** – human-computer interaction and design
- **ComputingEd@UW** – computer science education
Computer Science Books

- The Hidden Language of Computer Hardware and Software
 - Charles Petzold

- Nine Algorithms That Changed the Future
 - The Ingenious Ideas That Drive Today’s Computers
 - John MacCormick

- Weapons of Math Destruction
 - How Big Data Increases Inequality and Threatens Democracy
 - Cathy O’Neil

- Algorithms of Oppression
 - How Search Engines Reinforce Racism
 - Safiya Umoja Noble

- Dear Data
 - Stefanie Posavec
Computing & Jobs

- Computer occupations (15-1100)
- Engineers (17-2000)
- Life scientists (19-1000)
- Physical scientists (19-2000)
- Social scientists and related workers (19-3000)
- Mathematical science occupations (15-2000)

Data from the spreadsheet at http://www.bls.gov/emp/ind-occ-matrix/occupation.xlsx
Internships

- Various career fairs around campus.
- Start looking early!
- Cast a broad net and interview lots of places. Don’t be afraid of getting rejected!
- For those just starting out
 - [Microsoft Explorer Program](#)
 - [Google Engineering Practicum](#)
 - [Code.org suggestions](#)
Roles in Industry

- **Software Developer/Software Engineer**
 - Builds and designs software
 - Includes designing and engineering architecture of a software system as well as programming

- **Product Manager (PM)**
 - Designs and makes decisions regarding the overall product
 - Works with people across disciplines at the company
 - Role can be different at different companies

- **Test/QA**
 - Write and design tests of the product

- **Site Reliability Engineer (SRE)**
 - Responsible for ensuring that systems and services are available and responsive
Small vs Big Company?

- Small Company
 - Lots of autonomy and impact within the company
 - Often move quickly
 - Breadth – get to work on many projects and with many types of people

- Large company
 - Large data sets, impact many users
 - Lots of support and infrastructure to do your job well
 - Depth – get to focus on specific areas of a project
 - Will you be doing work that helps society broadly?
What Do I Do?

I’m teaching professor in the Paul G. Allen Center of Computer Science & Engineering. My job is to teach and get you all excited about computing!

Topics in CS that interest me:

- Data Science
 - Machine Learning and Data Visualization
- Theoretical Computer Science
 - Approximation and randomized algorithms
 - Theoretical backings of machine learning
- Computer Science Education
 - Introductory programming and introductory data science
 - Making complex topics in machine learning and data science accessible to more students!
 - Scaling classes to handle increased enrollments
Where Have I worked?

- **Redfin**
 - Job: Full-stack engineer (frontend and backend)
 - Languages: Java + Javascript

- **Socrata (Seattle City Data)**
 - Job: Mostly data science, a little of backend work on search
 - Machine Learning: Python
 - Search Backend: Scala + ElasticSearch

- **Sift**
 - Job: Machine learning infrastructure
 - Language: Java + Python
 - Libraries: Spark
AMA
(ask me anything)