
Building Java Programs

Binary Search Trees

reading: 17.3 – 17.4

2

3

pollev.com/cse143

 What is the output of this program?
public static void main(String[] args) {

Point p = new Point(1, 2);

change1(p);

System.out.println(p);

change2(p);

System.out.println(p);

}

public static void change1(Point p) {

p.x = 14;

}

public static void change2(Point p) {

p = new Point(7, 8);

}

4

contains

6091

2987

55

42-3

overallRoot

private boolean contains(IntTreeNode root,
int value) {

if (root == null) {
return false;

} else if (root.data == value) {
return true;

} else {
return contains(root.left, value)

|| contains(root.right, value);
}

}

root1

root2

root3

root5root4

root6

F F

F T

T

5

Case study: contains w/ arrays
 What is the Big-O efficiency to see if a value is contained in

an unsorted array?

 What about if the array is sorted?

-3 87 42 55 91 29 60

-3 29 42 55 60 87 91

6

Binary search trees
 binary search tree ("BST"): a binary tree where each

non-empty node R has the following properties:
 elements of R's left subtree contain data "less than" R's data,
 elements of R's right subtree contain data "greater than" R's,
 R's left and right subtrees are also binary search trees.

 BSTs store their elements in
sorted order, which is helpful
for searching/sorting tasks.

9160

8729

55

42-3

overall root

7

BST examples
 Which of the trees shown are legal binary search trees?

xk

qg

m

e

b 1810

115

8

4

2 7

20

18

42

-7-1

-5

21.38.1

9.61.9

7.2

8

Searching a BST
 Describe an algorithm for searching a binary search tree.

 Try searching for the value 31, then 6.

 What is the maximum
number of nodes you
would need to examine
to perform any search?

12

18

7

4 15

overall root

-2 1613

35

31

22 58

19 8740

9

Exercise
 Convert the IntTree class into a SearchTree class.

 The elements of the tree will form a legal binary search tree.

 Write a contains method that takes advantage of the BST
structure.

 tree.contains(29) true

 tree.contains(55) true

 tree.contains(63) false

 tree.contains(35) false

9160

8729

55

42-3

overall root

10

Exercise solution
// Returns whether this BST contains the given integer.
public boolean contains(int value) {

return contains(overallRoot, value);
}

private boolean contains(IntTreeNode node, int value) {
if (node == null) {

return false; // base case: not found here
} else if (node.data == value) {

return true; // base case: found here
} else if (node.data > value) {

return contains(node.left, value);
} else { // root.data < value

return contains(node.right, value);
}

}

11

Adding to a BST
 Suppose we want to add new values to the BST below.

 Where should the value 14 be added?
 Where should 3 be added? 7?

 If the tree is empty, where
should a new value be added?

 What is the general algorithm?

1910

115

8

4

2 7

25

22

overall root

12

Adding exercise
 Draw what a binary search tree would look like if the

following values were added to an initially empty tree in
this order:

50
20
75
98
80
31
150
39
23
11
77

50

20 75

80

9811

39

31

15023

77

13

Exercise
 Add a method add to the SearchTree class that adds a

given integer value to the BST.
 Add the new value in the proper place to maintain BST

ordering.

 tree.add(49);

9160

8729

55

42-3

overall root

49

14

An incorrect solution
// Adds the given value to this BST in sorted order.
public void add(int value) {

add(overallRoot, value);
}

private void add(IntTreeNode node, int value) {
if (node == null) {

node = new IntTreeNode(value);
} else if (node.data > value) {

add(node.left, value);
} else if (node.data < value) {

add(node.right, value);
}
// else node.data == value, so
// it's a duplicate (don't add)

}

 Why doesn't this solution work?

9160

8729

55

42-3

overallRoot

The x = change(x)
pattern

read 17.3

16

A tangent: Change a point
 What is the state of the object referred to by p after this

code?

public static void main(String[] args) {
Point p = new Point(1, 2);
change(p);
System.out.println(p);

}

public static void change(Point thePoint) {
thePoint.x = 3;
thePoint.y = 4;

}

// answer: (3, 4)

2y1xp

17

Change point, version 2
 What is the state of the object referred to by p after this

code?

public static void main(String[] args) {
Point p = new Point(1, 2);
change(p);
System.out.println(p);

}

public static void change(Point thePoint) {
thePoint = new Point(3, 4);

}

// answer: (1, 2)

2y1xp

4y3x

18

Changing references
 If a method dereferences a variable (with .) and modifies

the object it refers to, that change will be seen by the
caller.
public static void change(Point thePoint) {

thePoint.x = 3; // affects p
thePoint.setY(4); // affects p

 If a method reassigns a variable to refer to a new object,
that change will not affect the variable passed in by the
caller.
public static void change(Point thePoint) {

thePoint = new Point(3, 4); // p unchanged
thePoint = null; // p unchanged

 What if we want to make the variable passed in become null?

19

Change point, version 3
 What is the state of the object referred to by p after this

code?

public static void main(String[] args) {
Point p = new Point(1, 2);
change(p);
System.out.println(p);

}

public static Point change(Point thePoint) {
thePoint = new Point(3, 4);
return thePoint;

}

// answer: (1, 2)

2y1xp

4y3x

20

Change point, version 4
 What is the state of the object referred to by p after this

code?

public static void main(String[] args) {
Point p = new Point(1, 2);
p = change(p);
System.out.println(p);

}

public static Point change(Point thePoint) {
thePoint = new Point(3, 4);
return thePoint;

}

// answer: (3, 4)

2y1xp

4y3x

21

x = change(x);
 If you want to write a method that can change the object

that a variable refers to, you must do three things:
1. pass in the original state of the object to the method
2. return the new (possibly changed) object from the method
3. re-assign the caller's variable to store the returned result

p = change(p); // in main

public static Point change(Point thePoint) {
thePoint = new Point(99, -1);
return thePoint;

 We call this general algorithmic pattern x = change(x);
 also seen with strings: s = s.toUpperCase();

22

The problem
 Much like with linked lists, if we just modify what a local

variable refers to, it won't change the collection.

private void add(IntTreeNode node, int value) {
if (node == null) {

node = new IntTreeNode(value);
}

 In the linked list case, how did we
actually modify the list?
 by changing the front
 by changing a node's next field 9160

8729

55

42-3

overallRoot

49node

23

Applying x = change(x)
 Methods that modify a tree should have the following

pattern:
 input (parameter): old state of the node
 output (return): new state of the node

 In order to actually change the tree, you must reassign:

node = change(node, parameters);
node.left = change(node.left, parameters);
node.right = change(node.right, parameters);
overallRoot = change(overallRoot, parameters);

your
method

node
before

node
after

parameter return

24

A correct solution
// Adds the given value to this BST in sorted order.
public void add(int value) {

overallRoot = add(overallRoot, value);
}

private IntTreeNode add(IntTreeNode node, int value) {
if (node == null) {

node = new IntTreeNode(value);
} else if (node.data > value) {

node.left = add(node.left, value);
} else if (node.data < value) {

node.right = add(node.right, value);
} // else a duplicate; do nothing

return node;
}

 What happens when node is a leaf?

9160

8729

55

42-3

overallRoot

