
2

pollev.com/cse143

 Warm Up: What is the output of this code?

ArrayIntList list1 = new ArrayIntList();

ArrayIntList list2 = new ArrayIntList();

list1.add(1);

list2.add(2);

list1.add(3);

list2.add(4);

System.out.println(list1);

System.out.println(list2);

3

Recall: classes and objects
• class: A program entity that represents:

 A complete program or module, or

 A template for a type of objects.

 (ArrayList is a class that defines a type.)

• object: An entity that combines state and behavior.

– object-oriented programming (OOP): Programs that

perform their behavior as interactions between objects.

– abstraction: Separation between concepts and details.

Objects provide abstraction in programming.

6

Preconditions
 precondition: Something your method assumes is true

at the start of its execution.

 Often documented as a comment on the method's header:

// Returns the element at the given index.

// Precondition: 0 <= index < size

public int get(int index) {

return elementData[index];

}

 Stating a precondition doesn't really "solve" the problem, but
it at least documents our decision and warns the client what
not to do.

 What if we want to actually enforce the precondition?

8

Throwing exceptions (4.4)
throw new ExceptionType();

throw new ExceptionType("message");

 Generates an exception that will crash the program,
unless it has code to handle ("catch") the exception.

 Common exception types:

 ArithmeticException, ArrayIndexOutOfBoundsException,

FileNotFoundException, IllegalArgumentException,

IllegalStateException, IOException,

NoSuchElementException, NullPointerException,

RuntimeException, UnsupportedOperationException

 Why would anyone ever want a program to crash?

11

Postconditions
 postcondition: Something your method promises will be

true at the end of its execution.

 Often documented as a comment on the method's header:

// Precondition : size() < capacity

// Postcondition: value is added at the end of the list

public void add(int value) {

elementData[size] = value;

size++;

}

 If your method states a postcondition, clients should be able to
rely on that statement being true after they call the method.

14

this keyword

 this : A reference to the implicit parameter

(the object on which a method/constructor is called)

 Syntax:

 To refer to a field: this.field

 To call a method: this.method(parameters);

 To call a constructor this(parameters);

from another constructor:

16

ArrayList of primitives?

 The type you specify when creating an ArrayList must

be an object type; it cannot be a primitive type.

// illegal -- int cannot be a type parameter

ArrayList<int> list = new ArrayList<int>();

 But we can still use ArrayList with primitive types by

using special classes called wrapper classes in their place.

// creates a list of ints

ArrayList<Integer> list = new ArrayList<Integer>();

17

Wrapper classes

 A wrapper is an object whose sole purpose is to hold a primitive value.

 Once you construct the list, use it with primitives as normal:

ArrayList<Double> grades = new ArrayList<Double>();

grades.add(3.2);

grades.add(2.7);

...

double myGrade = grades.get(0);

Primitive
Type

Wrapper
Type

int Integer

double Double

char Character

boolean Boolean

19

Tips for testing
 You cannot test every possible input, parameter value, etc.

 Think of a limited set of tests likely to expose bugs.

 Think about boundary cases

 Positive; zero; negative numbers

 Right at the edge of an array or collection's size

 Think about empty cases and error cases

 0, -1, null; an empty list or array

 test behavior in combination

 Maybe add usually works, but fails after you call remove

 Make multiple calls; maybe size fails the second time only

