
Building Java Programs

Chapter 12

introduction to recursion

reading: 12.1

2

3

Road Map - Quarter
CS Concepts
• Client/Implementer
• Efficiency
• Recursion
• Regular Expressions
• Grammars
• Sorting
• Backtracking
• Hashing
• Huffman Compression

Data Structures
• Lists
• Stacks
• Queues
• Sets
• Maps
• Priority Queues

Java Language
• Exceptions
• Interfaces
• References
• Comparable
• Generics
• Inheritance/Polymorphism
• Abstract Classes

Java Collections
• Arrays
• ArrayList🛠
• LinkedList 🛠
• Stack
• TreeSet / TreeMap
• HashSet / HashMap
• PriorityQueue

4

Road Map - Week
 Monday

 Introduce idea of “recursion”

 Goal: Understand idea of recursion and read recursive code.

 Tuesday

 Practice reading recursive code

 Wednesday

 More complex recursive examples

 Goal: Identify recursive structure in problem and write
recursive code

 Thursday

 Practice writing recursive code

 Friday

 Exam logistics

 Set-up for A5

8

Recursion
 recursion: The definition of an operation in terms of itself.

 Solving a problem using recursion depends on solving
smaller occurrences of the same problem.

 recursive programming: Writing methods that call
themselves to solve problems recursively.

 An equally powerful substitute for iteration (loops)

 Particularly well-suited to solving certain types of problems

9

11

Getting down stairs
 Need to know two things:

 Getting down one stair

 Recognizing the bottom

 Most code will look like:

if (simplest case) {

compute and return solution

} else {

divide into similar subproblem(s)

solve each subproblem recursively

assemble the overall solution

}

12

Recursion and cases
 Every recursive algorithm involves at least 2 cases:

 base case: A simple occurrence that can be answered
directly.

 recursive case: A more complex occurrence of the problem
that cannot be directly answered, but can instead be described
in terms of smaller occurrences of the same problem.

 Some recursive algorithms have more than one base or
recursive case, but all have at least one of each.

 A crucial part of recursive programming is identifying these
cases.

23

Recursion vs Iteration
public static void writeStars(int n) {

while (n > 0) {

System.out.print("*");

n--;

}

System.out.println();

}

public static void writeStars(int n) {

if (n == 0) {

System.out.println();

} else {

System.out.print("*");

writeStars(n – 1);

}

}

24

Recursion vs Iteration
public static void writeStars(int n) {

while (n > 0) {

System.out.print("*");

n--;

}

System.out.println(); // base case. assert: n == 0

}

public static void writeStars(int n) {

if (n == 0) {

System.out.println(); // base case

} else {

System.out.print("*");

writeStars(n – 1);

}

}

25

public static void writeStars(int n) {

while (n > 0) { // "recursive" case

System.out.print("*"); // small piece of problem

n--;

}

System.out.println();

}

public static void writeStars(int n) {

if (n == 0) {

System.out.println();

} else { // "recursive" case. assert: n > 0

System.out.print("*"); // small piece of problem

writeStars(n – 1);

}

}

Recursion vs Iteration

26

public static void writeStars(int n) {

while (n > 0) { // "recursive" case

System.out.print("*");

n--; // make the problem smaller

}

System.out.println();

}

public static void writeStars(int n) {

if (n == 0) {

System.out.println();

} else { // "recursive" case. assert: n > 0

System.out.print("*");

writeStars(n – 1); // make the problem smaller

}

}

Recursion vs Iteration

31

Exercise
 Note: We did reverseDeck in lecture but they are the

exact same problem

 Write a recursive method reverseLines that accepts a file
Scanner and prints the lines of the file in reverse order.

 Example input file: Expected console output:

I have eaten the icebox

the plums that were in

that were in the plums

the icebox I have eaten

 What are the cases to consider?

 How can we solve a small part of the problem at a time?

 What is a file that is very easy to reverse?

34

output:input file:

I have eaten
the plums
that were in
the icebox

the icebox
that were in
the plums
I have eaten

Tracing our algorithm
 call stack: The method invocations currently running

reverseLines(new Scanner("poem.txt"));

public static void reverseLines(Scanner input) {
if (input.hasNextLine()) {

String line = input.nextLine(); // "I have eaten"
reverseLines(input);
System.out.println(line);

}
}

public static void reverseLines(Scanner input) {
if (input.hasNextLine()) {

String line = input.nextLine(); // "the plums"
reverseLines(input);
System.out.println(line);

}
}

public static void reverseLines(Scanner input) {
if (input.hasNextLine()) {

String line = input.nextLine(); // "that were in"
reverseLines(input);
System.out.println(line);

}
}

public static void reverseLines(Scanner input) {
if (input.hasNextLine()) {

String line = input.nextLine(); // "the icebox"
reverseLines(input);
System.out.println(line);

}
}

public static void reverseLines(Scanner input) {
if (input.hasNextLine()) { // false

...
}

}

