
Building Java Programs

Chapter 12

introduction to recursion

reading: 12.1

5

Recursion
 recursion: The definition of an operation in terms of itself.

 Solving a problem using recursion depends on solving
smaller occurrences of the same problem.

 recursive programming: Writing methods that call
themselves to solve problems recursively.

 An equally powerful substitute for iteration (loops)

 Particularly well-suited to solving certain types of problems

7

Getting down stairs
 Need to know two things:

 Getting down one stair

 Recognizing the bottom

 Most code will look like:

if (simplest case) {

compute and return solution

} else {

divide into similar subproblem(s)

solve each subproblem recursively

assemble the overall solution

}

8

Recursion and cases
 Every recursive algorithm involves at least 2 cases:

 base case: A simple occurrence that can be answered
directly.

 recursive case: A more complex occurrence of the problem
that cannot be directly answered, but can instead be described
in terms of smaller occurrences of the same problem.

 Some recursive algorithms have more than one base or
recursive case, but all have at least one of each.

 A crucial part of recursive programming is identifying these
cases.

17

Recursion vs Iteration
public static void writeStars(int n) {

while (n > 0) {

System.out.print("*");

n--;

}

System.out.println();

}

public static void writeStars(int n) {

if (n == 0) {

System.out.println();

} else {

System.out.print("*");

writeStars(n – 1);

}

}

18

Recursion vs Iteration
public static void writeStars(int n) {

while (n > 0) {

System.out.print("*");

n--;

}

System.out.println(); // base case. assert: n == 0

}

public static void writeStars(int n) {

if (n == 0) {

System.out.println(); // base case

} else {

System.out.print("*");

writeStars(n – 1);

}

}

19

public static void writeStars(int n) {

while (n > 0) { // "recursive" case

System.out.print("*"); // small piece of problem

n--;

}

System.out.println();

}

public static void writeStars(int n) {

if (n == 0) {

System.out.println();

} else { // "recursive" case. assert: n > 0

System.out.print("*"); // small piece of problem

writeStars(n – 1);

}

}

Recursion vs Iteration

20

public static void writeStars(int n) {

while (n > 0) { // "recursive" case

System.out.print("*");

n--; // make the problem smaller

}

System.out.println();

}

public static void writeStars(int n) {

if (n == 0) {

System.out.println();

} else { // "recursive" case. assert: n > 0

System.out.print("*");

writeStars(n – 1); // make the problem smaller

}

}

Recursion vs Iteration

25

Exercise
 Write a recursive method reverseLines that accepts a file
Scanner and prints the lines of the file in reverse order.

 Example input file: Expected console output:

I have eaten the icebox

the plums that were in

that were in the plums

the icebox I have eaten

 What are the cases to consider?

 How can we solve a small part of the problem at a time?

 What is a file that is very easy to reverse?

28

output:input file:

I have eaten
the plums
that were in
the icebox

the icebox
that were in
the plums
I have eaten

Tracing our algorithm
 call stack: The method invocations currently running

reverseLines(new Scanner("poem.txt"));

public static void reverseLines(Scanner input) {
if (input.hasNextLine()) {

String line = input.nextLine(); // "I have eaten"
reverseLines(input);
System.out.println(line);

}
}

public static void reverseLines(Scanner input) {
if (input.hasNextLine()) {

String line = input.nextLine(); // "the plums"
reverseLines(input);
System.out.println(line);

}
}

public static void reverseLines(Scanner input) {
if (input.hasNextLine()) {

String line = input.nextLine(); // "that were in"
reverseLines(input);
System.out.println(line);

}
}

public static void reverseLines(Scanner input) {
if (input.hasNextLine()) {

String line = input.nextLine(); // "the icebox"
reverseLines(input);
System.out.println(line);

}
}

public static void reverseLines(Scanner input) {
if (input.hasNextLine()) { // false

...
}

}

