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Linked node problem 3
 What set of statements turns this picture:

 Into this?
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Linked node problem 3
 How many ListNode variables?

 Which variables change?
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Abstract data types (ADTs)
 abstract data type (ADT): A specification of a collection 

of data and the operations that can be performed on it.

 Describes what a collection does, not how it does it

 Java's collection framework describes several ADTs:

 Queue, List, Collection, Deque, List, Map, Set

 An ADT can be implemented in multiple ways:

 ArrayList and LinkedList implement List

 HashSet and TreeSet implement Set

 LinkedList, ArrayDeque, etc. implement Queue

 The same external behavior can be implemented in many 
different ways, each with pros and cons.
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Linked List vs. Array

 Print list values:

ListNode list= ...;

ListNode current = list;

while (current != null) {

System.out.println(current.data);

current = current.next;

}

 Similar to array code:

int[] a = ...;

int i = 0;

while (i < a.length) {

System.out.println(a[i]);

i++;

}

Description Array Code Linked List Code

Go to front of list int i = 0; ListNode current = list;

Test for more elements i < size current != null

Current value elementData[i] current.data

Go to next element i++; current = current.next;
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changing a list
 There are only two ways to change a linked list:

 Change the value of front (modify the front of the list)

 Change the value of <node>.next (modify middle or end of list 

to point somewhere else)

 Implications:

 To add in the middle, need a reference to the previous node

 Front is often a special case


