
2



3

Linked node problem 3
 What set of statements turns this picture:

 Into this?

data next

10

data next

20
list1

data next

30

data next

40
list2

data next

10

data next

20
list1

data next

40
list2

data next

30



4

Linked node problem 3
 How many ListNode variables?

 Which variables change?

data next

10

data next

20
list1

data next

30

data next

40
list2

data next

10

data next

20
list1

data next

40
list2

data next

30

A

B C

E F

D

E

D

C



6

data next

10

data next

20
list1

data next

30

current



12

Abstract data types (ADTs)
 abstract data type (ADT): A specification of a collection 

of data and the operations that can be performed on it.

 Describes what a collection does, not how it does it

 Java's collection framework describes several ADTs:

 Queue, List, Collection, Deque, List, Map, Set

 An ADT can be implemented in multiple ways:

 ArrayList and LinkedList implement List

 HashSet and TreeSet implement Set

 LinkedList, ArrayDeque, etc. implement Queue

 The same external behavior can be implemented in many 
different ways, each with pros and cons.



15

Linked List vs. Array

 Print list values:

ListNode list= ...;

ListNode current = list;

while (current != null) {

System.out.println(current.data);

current = current.next;

}

 Similar to array code:

int[] a = ...;

int i = 0;

while (i < a.length) {

System.out.println(a[i]);

i++;

}

Description Array Code Linked List Code

Go to front of list int i = 0; ListNode current = list;

Test for more elements i < size current != null

Current value elementData[i] current.data

Go to next element i++; current = current.next;



16

data next

10

data next

20
front

data next

30

Before/After
 Before

 After

data next

10

data next

20
front

data next

30

data next

40



23

changing a list
 There are only two ways to change a linked list:

 Change the value of front (modify the front of the list)

 Change the value of <node>.next (modify middle or end of list 

to point somewhere else)

 Implications:

 To add in the middle, need a reference to the previous node

 Front is often a special case


