CSE 142 vs CSE 143

CSE 142 / AP CS A
- You learned how to write programs and decompose large problems with:
 - Print statements
 - Methods
 - Control Structures
 - loops, if/else
 - File I/O
 - Arrays
 - Objects

CSE 143
- Return of the objects
- You learned to solve more complex tasks efficiently
 - Data structures to organize and model data
 - Algorithms for solving common tasks
 - More advanced language features
- Abstractions are important!
Road Map

CS Concepts
- Client/Implementer
- Efficiency
- Recursion
- Regular Expressions
- Grammars
- Searching / Sorting
- Backtracking
- Hashing
- Huffman Compression

Java Language
- Exceptions
- Interfaces
- References
- Comparable
- Generics
- Inheritance / Polymorphism
- Abstract Classes

Data Structures
- Lists
- Stacks
- Queues
- Sets
- Maps
- Priority Queues

Java Collections
- Arrays
- ArrayList
- LinkedList
- Stack
- TreeSet / TreeMap
- HashSet / HashMap
- PriorityQueue
Major themes

• Abstraction
 • Leverage existing components without understanding details
 • Create components that can be used as black boxes

• Problem solving
 • Decomposing a large problem into smaller ones

• Design tradeoffs
 • Algorithm analysis - scalability and growth
 • Keeping code easy to read for maintainability

• Recursion
 • Reason about problems in terms of self-similarity
 • Write very short code to achieve complex behaviors
What project?

- Add a GUI to the random sentence generator
- Automate chemistry, physics, calculus problems, etc
 - Maybe even automate writing code with good style?
- Find quotes by keyword in books
- What are you currently doing that a computer could do?
- List of some project ideas
What language?

- Expanding your Java knowledge with a project is valuable

- Pick a project, see what language is most appropriate
 - iOS: Swift
 - Android: Java, Kotlin
 - Client-side web: Javascript (many frameworks to choose from)
 - Beautiful visuals: Processing
 - Data Processing + Machine Learning: Python
 - Data Management: SQL
 - Embedded systems: C / C++

- Learn a new programming paradigm
 - Functional languages: Racket, Haskell, Scala, (now, Java 8!)
Leveraging existing code

- Processing language
 - http://nlp.stanford.edu/software/

- Building games
 - http://lwjgl.org/
 - http://jbox2d.org/ (with physics!)

- Processing biological data
 - http://biojava.org/wiki/Main_Page

- Accessing Facebook data
 - http://restfb.com/

- Making music
 - http://www.jfugue.org/
Courses?

• CSE non-majors
 • CSE 154: Web Programming
 • CSE 163: Intermediate Data Programming (Python)
 • CSE 373: Data Structures and Algorithms
 • CSE 374: Programming Concepts and Tools (C/C++, Linux, ...)
 • CSE/STAT 416: Machine learning (requires STAT 311 or 390)
 • CSE 131: Digital Photography
 • CSE 460: Animation Capstone (open to all majors)
 • And more!

• CSE majors
 • CSE 311: (Mathematical) Foundations of Computing
 • CSE 332: Data Abstractions (Data Structures and Algorithms)
 • CSE 331: Software Design and Implementation
 • CSE 341: Programming Languages
 • CSE 344: Intro to Data Management (and databases)
 • CSE 351: Hardware/Software Interface
 • And more!

• INFO, AMATH, HCDE, DXARTS, ...
Computer Science Books

The Hidden Language of Computer Hardware and Software

C O D E
100011 101101 1010 10101

Charles Petzold

9 ALGORITHMS THAT CHANGED THE FUTURE
THE INGENIOUS IDEAS THAT DRIVE TODAY'S COMPUTERS
JOHN MacCormick

Dear Data
GIORGIA LUPI
FOREWORD BY MARIA POPOVA

Stefanie Posavec
Computing & Jobs

- Computer occupations (15-1100)
- Engineers (17-2000)
- Life scientists (19-1000)
- Physical scientists (19-2000)
- Social scientists and related workers (19-3000)
- Mathematical science occupations (15-2000)

Data from the spreadsheet at http://www.bls.gov/emp/ind-occ-matrix/occupation.xlsx
Internships

- Various career fairs around campus.
- Start looking early!
- Cast a broad net and interview lots of places. Don’t be afraid of getting rejected!
- For those just starting out
 - Microsoft Explorer Program
 - Google Engineering Practicum
Roles in Industry

• Software Developer/Software Engineer
 • Builds and designs software
 • Includes designing and engineering architecture of a software system as well as programming

• Product Manager (PM)
 • Designs and makes decisions regarding the overall product
 • Works with people across disciplines at the company
 • Role can be different at different companies

• Test/QA
 • Write and design tests of the product

• Site Reliability Engineer (SRE)
 • Responsible for ensuring that systems and services are available and responsive
Small vs Big Company?

- Small Company
 - Lots of autonomy and impact within the company
 - Often move quickly
 - Breadth – get to work on many projects and with many types of people

- Large company
 - Large data sets, impact many users
 - Lots of support and infrastructure to do your job well
 - Depth – get to focus on specific areas of a project
What Do I Do?

- I’m lecturer in the Paul G. Allen Center of Computer Science & Engineering. My job is to teach and get you all excited about computing!
- Topics in CS that interest me:
 - Data Science
 - Machine Learning and Data Visualization
 - Theoretical Computer Science
 - Approximations and randomized algorithms
 - Computer Science Education
 - Introductory programming and introductory data science
 - Scaling classes to handle increased enrollments
Where Have I worked?

- **Redfin**
 - Job: Full-stack engineer (worked on frontend and backend)
 - Languages: Java + Javascript

- **Socrata** *(Seattle City Data)*
 - Job: Mostly data science, a little of backend work on search
 - Machine Learning: Python
 - Search Backend: Scala + ElasticSearch

- **Sift Science**
 - Job: Machine learning infrastructure
 - Language: Java + Python
 - Libraries: Spark
AMA
(ask me anything)