
Hashing
Kyle Pierce
thanks to Kyle Pierce & Marty Stepp

Why Hashing?

● used to implement structures like Java’s HashMap and HashSet
○ no guarantee about ordering of elements
○ constant-time add, contains, and remove methods
○ can store any type of Object

Why Hashing?

● used to implement structures like Java’s HashMap and HashSet
○ no guarantees about ordering of elements
○ constant-time add, contains, and remove methods
○ can store any type of Object

how is this possible?

Arrays

● Good: it takes O(1) time to add or access at an index

● Bad: it takes O(n) time to check if an (unsorted) array contains an element

Arrays

● Good: it takes O(1) time to add or access at an index

● Bad: it takes O(n) time to check if an (unsorted) array contains an element

how can we fix this?

Arrays

● Good: it takes O(1) time to add or access at an index

● Bad: it takes O(n) time to check if an (unsorted) array contains an element

how can we fix this?
what if we knew the index the element would be at?

Hash Functions

Hash: to map a value to an index

Hash Table: array that stores elements
at hashed indices

Hash Function: an algorithm that maps
values to indices

One possible hash function:

hash(i) = i % table.length

set.add(11) // 11 % 10 == 1
set.add(49) // 49 % 10 == 9
set.add(24) // 24 % 10 == 4
set.add(7) // 7 % 10 == 7

Using our Hash Function

public static int hash(int i) {
return Math.abs(i) % table.length;

}

Add to table: table[hash(i)] = i;
Search table: table[hash(i)] == i
Remove from table: table[hash(i)] = 0;

What are the runtimes of these?

Using our Hash Function

public static int hash(int i) {
return Math.abs(i) % table.length;

}

Add to table: table[hash(i)] = i;
Search table: table[hash(i)] == i
Remove from table: table[hash(i)] = 0;

What are the runtimes of these? O(1)

Hash Functions
(continued)

Hash: to map a value to an index

Hash Table: array that stores elements
at hashed indices

Hash Function: an algorithm that maps
values to indices

What makes a good hash function?

● spread out from 0 to table.length
○ will help minimize collisions

● hash of a value is always the same
○ otherwise can’t find anything

● should be fast to compute

Hashing Objects

● all Java objects have a built-in hashCode() method that we can call

// returns an integer hash code for this object
public int hashCode() {

...
}

● how is it implemented?
○ depends on the type of object and its fields
○ you can define the hashCode() method in classes you write

Hashing Strings

● this is what the hashCode() method for Strings looks like:

// returns an integer hash code for this object
public int hashCode() {

int hash = 0;
for (int i = 0; i < this.length(); i++) {

hash = 31 * hash + this.charAt(i);
}

}

● some Strings still map to the same hash -- a “collision” e.g. “Ea” and “FB”

Using our (new) Hash Function

public static int hash(E e) {
return Math.abs(e.hashCode()) % table.length;

}

Add to table: table[hash(e)] = e;
Search table: table[hash(e)].equals(e)
Remove from table: table[hash(e)] = null;

Collisions

Collision: when a hash function maps
two values to the same index

Collision Resolution: an algorithm for
fixing collisions

hash(i) = i % table.length

set.add(11)
set.add(49)
set.add(24)
set.add(7)
set.add(54) // collides with 24

Chaining

● resolve collisions by storing a list at each index
○ add/search/remove have to traverse lists, but we will keep them short

Rehashing

Rehashing: growing into a larger array when the table becomes too full
● cannot simply copy over the array (why not?)

Load Factor: ratio of (# elements) / (hash table length)
● typically rehash when load factor ≅ 0.75
● large prime as hash table length reduces collisions

