Building Java Programs

Chapter 12
introduction to recursion

reading: 12.1

I'-.|-_ I.IH'-I L F ‘I_-I"I el i 'r'_._.
. . e ._l.-._-..r:.‘ a. s JLTE

‘e _:I-

" Road Map - Quarter

CS Concepts

Client/Implementer
Efficiency

Data Structures

Lists
Stacks
Queues
Sets
Maps

Java Language

Exceptions
Interfaces
References

Java Collections

Arrays

ArrayList

LinkedList

Stack

TreeSet / TreeMap
HashSet / HashMap

Road Map - Week

* Monday

Introduce idea of “recursion”

Goal: Understand idea of recursion and read recursive code.
* Tuesday

Practice reading recursive code
» Wednesday

More complex recursive examples

Goal: Identify recursive structure in problem and write
recursive code

* Thursday

Practice writing recursive code
* Friday

Exam logistics

Set-up for A5

Exercise

* (To a student in the front row)

How many students total are directly behind you in your

"column" of the classroom?

You have poor vision, SO you can
see only the people right next to you.
So you can't just look back and count.

But you are allowed to ask
questions of the person next to you.

How can we solve this problem?
(recursively)

How many people are in this column?
... Uh, how do | figure that out again?

Recursive algorithm

* Number of people behind me:

If there is someone behind me,
ask him/her how many people are behind him/her.

-« When they respond with a value N, then I will answer N + 1.

If there is nobody behind me, I will answer 0.

;ow many people are behind me?
;ow many people are behind me?

gow many people are behind me?

The idea

e Recursion is all about breaking a big problem into smaller
occurrences of that same problem.

Each person can solve a small part of the problem.

- What is a small version of the problem that would be easy to
answer?

- What information from a neighbor might help me?

Hey, neighbor, help me out!

@

Hey, neighbor, help me out!

Hey, neighbor, help me out!

' 4

Recursion

e recursion: The definition of an operation in terms of itself.

Solving a problem using recursion depends on solving
smaller occurrences of the same problem.

e recursive programming: Writing methods that call
themselves to solve problems recursively.

An equally powerful substitute for iteration (loops)
Particularly well-suited to solving certain types of problems

fg

Why learn recursion?

"Cultural experience" - think differently about problems

Solves some problems more naturally than iteration

Can lead to elegant, simplistic, short code (when used well)

Many programming languages ("functional"” languages such

as Scheme, ML, and Haskell) use recursion exclusively (no
loops)

A key component of many of our assignments in CSE 143

10

Getting down stairs

"F? B * Need to know two things:
' 4484 » Getting down one stair

» Recognizing the bottom

e Most code will look like:

1f (simplest case) {
compute and return solution

} else {
divide into similar subproblem(s)
solve each subproblem recursively

assemble the overall solution

11

Recursion and cases

* Every recursive algorithm involves at least 2 cases:

fg

base case: A simple occurrence that can be answered
directly.

recursive case: A more complex occurrence of the problem
that cannot be directly answered, but can instead be described
in terms of smaller occurrences of the same problem.

Some recursive algorithms have more than one base or
recursive case, but all have at least one of each.

A crucial part of recursive programming is identifying these
cases.

12

f

LinAi(ed Lists are Self-Similar

e a linked list is:
null
a node whose next field references a list

* recursive data structure: a data structure partially

composed of smaller or simpler instances of the same data
structure

13

Another recursive task

* How can we remove exactly half of the M&M's in a large
bowl, without dumping them all out or being able to count
them?

» What if multiple people help out with solving the problem?
Can each person do a small part of the work?

» What is a number of M&M's
that it is easy to double,
even if you can't count?

« (What is a "base case"?)

16

Recursion In Java

» Consider the following method to print a line of *
characters:

// Prints a line containing the given number of stars.
// Precondition: n >= 0
public static voird printsStarstink n)
31y I (o i e e i BRI A n R N o
systemiout cprint (e

}
Syetem.out printlin(); // end the line of output

* Write a recursive version of this method (that calls itself).
Solve the problem without using any loops.
Hint: Your solution should print just one star at a time.

A 74

A basic case

» What are the cases to consider?
What is a very easy number of stars to print without a loop?

publiec static veoid printsStars(ink n)
if (n == 1) {
// base case; just print one star
Systemioubeprrnibni sty
} else {

}

18

Handling more cases

 Handling additional cases, with no loops (in a bad way):

publacastalic vold printsiarsient v

e e e i
// base case; just print one star
Sysbemiont cprintln i)

} else 1if (n == 2) {

System.out .prant (2% ;
Sy amvett R e

} else 1f (n == 3) {
sysbemioutiprint (NN
Systemioutprint (N xye
Sysbemiontiprintin i %)

} else 1if (n == 4) {
Sysbemronbep el s
Syisbemiontyprink el
Sy.stemroutyprantiChaitys
Syslbemioutiprinblni(iA s

} else

14

Handling more cases 2

» Taking advantage of the repeated pattern (somewhat

/

better):
public stalic vold printstarsiint by
i A Al
// base case; just print one star
Sysbemioutprintln (RS
} else 1f (n == 2) {
SyisemyontvpE i A
printStars (1) ; // prints &Y
} else 1if (n == 3) {
Sysbemiontyprint (s e
printStars (2) ; [l iprints el
} else 1if (n == 4) {
Sy shemyont i print sty
printStars (3) ; L/ prints akel

} else

20

Using recursion properly

——
» Condensing the recursive cases into a single case:

publacastalic vold printsiarsient v

it (- L)
// base case; just print one star
Sysbemiont cprintln i)

el
// recursive case; print one more star
SyiS e et e EaE EAE e
printStars(n - 1) ;

21

"Recursion Zen"

» The real, even simpler, base case is an n of 0, not 1:

publacastalic vold printsiarsient v

if (n -~ 0)
// base case; just end the line of output
Sysbtemiout prinblne);

el
// recursive case; print one more star
SyiS e et e EaE EAE e
printStars(n - 1) ;

Recursion Zen: The art of properly identifying the best set of
cases for a recursive algorithm and expressing them elegantly.

(A CSE 143 informal term)

22

=

Recursion vs Iteration

pubilrc statiec vord writeStarsGint oy
while (n > 0) {
Systemiout print (Val) .
e
}
Svolem o pr e lin e

onbl oME ISR ety o Wt F e e MV e) S e b s I A A e
if (n == 0) {
System.out.println() ;
fvenlvee il
SV ems Gt e

writeStars(n - 1);

23

Recursion vs Iteration

poblyc statbtic vord writeStars(int r)f
e W S v O

Systemiout print (Val) .

n--;
}

System.out.println(); // base case. assert: n ==

U0k e MM SN h el N N i o in e M e M S e e A A e e A
if (n == 0) {
System.out.println(); // base case
Fiwealveeivd
Sy stem ot prant 4y

writestars tn <Ly

24

Recursion vs Iteration

poblyc statbtic vord writeStars(int r)f

while (n gy s Wreanraivaltogee
System.out.print ("*"); // small piece of problem
Bl

}

Systemsontiprrnmlnis

U0k e MM SN h el N N i o in e M e M S e e A A e e A
if (n == 0) {
SystEemouriprantnt):
e I e Pk e e I N e e e s
System.out.print ("*"); // small piece of problem

writestars tn <Ly

25

Recursion vs Iteration

poblyc statbtic vord writeStars(int r)f

while (n gy s Wreanraivaltogee
Systemioutiprant ()

n--; // make the problem smaller

}
o R T T W e MR AT I

U0k e MM SN h el N N i o in e M e M S e e A A e e A
if (n == 0) {
SystEemouriprantnt):
e I e Pk e e I N e e e s
Sy stem ot prant 4y

writeStars(n - 1); // make the problem smaller

26

Recursive tracing

e Consider the following recursive method:

publae seatidc anteomysberylant)i
b L0
return n;
} else {
abioue ol el B
ok o e O
return mystery(a + b);

What is the result of the following call?
mystery (648)

27

A recursive trace

mystery (648) :
Roant o = 6A8 T
wianb = eAs e g

= return mystery(a + Db);

// 64
8
// mystery (72)

mysterv(72) :
R e T e A oA A Y Oh
5 A A DN A A AV YA

» return mystery(a + b);

mysterv (9) :

Al = A 8 0 1 A

Lo
/] 2
// mystery (9)

28

Recursive tracing 2

e Consider the following recursive method:

publae seatidc anteomysberylant)i
eE tn L0
return L0 R an ey
} else {
int a = mystery(n / 10);
int b = mystery(n % 10);
pebuien e Ch OOt b e

What is the result of the following call?
mystery (348)

29

A recursive trace 2

mystery (348)
= int a = mystery(34);

S i S e
reburn ARy e // 33
il e A S AT
return CLO R Ayt // 44

o TeTur L0 N e S ek adds /7 3344
intib —myeter vy

return (10 * 8) + 8; // 88
o return (RO R 3R AAY R // 334488

» What is this method really doing?

30

Exercise

* Note: We did reverseDeck in lecture but they are the
exact same problem

* Write a recursive method reverselLines that accepts a file
Scanner and prints the lines of the file in reverse order.

Example input file:

Expected console output:

I have eaten
the plums
that were 1in

the i1cebox

the icebox
— that were 1in
the plums

I have eaten

What are the cases to consider?
- How can we solve a small part of the problem at a time?
- What is a file that is very easy to reverse?

31

f

* Reversing the lines of a file:
Read a line L from the file.
Print the rest of the lines in reverse order.
Print the line L.

e If only we had a way to reverse the rest of the lines of
the file....

32

Reversal solution

public static void reverselines (Scanner input)
1f (input.hasNextLine()) {
// recursive case
Sbreang lonoe = anputcnexilone ()
reverselines (input) ;
System.out.println(line);

Where is the base case?

{

33

Tracing our algorithm

e call stack: The method invocations currently running

reversellnes (new Scanner ("poem.txt"));

public static void reverselines (Scanner input) {

1f (input.hasNextLine()) {
Ct+vrina 1line = inriit nevt+rTaine () // "T haxra aatan
public static void reverselines (Scanner input) {
1f (input.hasNextLine()) {
O b e 1 2 L SR T, SR [\ . VA A | I S, Sy, ey | |
public static void reverselines (Scanner input) {
if (input.hasNextLine()) {
C+r+ina 1line = Iinmiit nevt+rT.aina () - // "+hat wara Iin"
public static void reverselines (Scanner input) {
if (input.hasNextLine()) {
Ctvarmex lamea — Srmraart mesz+T arne () . /l/l "+hhA §AanhaAse!
public static void reverselines (Scanner input) {
if (input.hasNextLine()) { // false
}
}
—T L I IaVv=<,T CTAlLTIl CIIT 1 CTIUUA
the plums that were 1n
that were in the plums
the icebox I have eaten

