Building Java Programs

Chapter 13
binary search and complexity

reading: 13.1-13.2

10/07/2018

DOGS SPOTIED THIS WEEKEND

CS Concepts

- Client/Implementer
- Efficiency
- Recursion
- Regular Expressions
- Grammars
- Sorting
- Backtracking
- Hashing
- Huffman Compression

Data Structures

- Lists
- Stacks
- Queues
- Sets
- Maps
- Priority Queues

Road Map

Java Language

- Exceptions
- Interfaces
- References
- Comparable
- Generics
- Inheritance/Polymorphism
- Abstract Classes

Java Collections

- Arrays
- ArrayList x
- LinkedList x
- Stack
- TreeSet / TreeMap
- HashSet / HashMap
- PriorityQueue

Sum this up for me

- Let's write a method to calculate the sum from 1 to some n

```
public static int suml(int n) {
    int sum = 0;
    for (int i = 1; i <= n; i++) {
        sum += i;
    }
    return sum;
}
```

- Gauss also has a way of solving this

```
public static int sum2(int n) {
    return n * (n + 1) / 2;
}
```

- Which one is more efficient?

Runtime Efficiency (13.2)

- efficiency: measure of computing resources used by code.
- can be relative to speed (time), memory (space), etc.
- most commonly refers to run time
- We want to be able to compare different algorithms to see which is more efficient

Efficiency Try 1

- Let's time the methods!

- Downsides
- Different computers give different run times
- The same computer gives different results!!! D:<

Efficiency - Try 2

- Count number of "simple steps" our algorithm takes to run
- Assume the following:
- Any single Java statement takes same amount of time to run.
- int $x=5$;
- boolean $b=(5+1 * 2)<15+3$;
- System.out.println("Hello");
- A loop's runtime, if the loop repeats N times, is N times the runtime of the statements in its body.
- A method call's runtime is measured by the total runtime of the statements inside the method's body.

Efficiency examples

Efficiency examples 2

- How many statements will execute if $\mathrm{N}=10$? If $\mathrm{N}=1000$?

Sum this up for me

- Let's write a method to calculate the sum from 1 to some n

```
public static int sum1(int n) {
    int sum = 0;}1
    for (int i = 1; i <= n; i++) {
        sum += i;
    }
    return sum; } 1
}
```

- Gauss also has a way of solving this

```
public static int sum2(int n)
    return n * (n + 1) / 2; } 1
```

\}

- Which one is more efficient?

Visualizing Difference

Comparing sum1 and sum2

Algorithm growth rates (13.2)

- We measure runtime in proportion to the input data size, N .
- growth rate: Change in runtime as N changes.
- Say an algorithm runs $\mathbf{0 . 4} \mathbf{N}^{\mathbf{3}}+\mathbf{2 5} \mathbf{N}^{\mathbf{2}}+\mathbf{8 N}+\mathbf{1 7}$ statements.
- Consider the runtime when N is extremely large .
- We ignore constants like 25 because they are tiny next to N .
- The highest-order term (N^{3}) dominates the overall runtime.
- We say that this algorithm runs "on the order of" N^{3}.
- or $\mathbf{O}\left(\mathbf{N}^{3}\right)$ for short ("Big-Oh of N cubed")

(11) Poll Everywhere pollev.com/cse143

- Suppose our list had the contents

```
public void method(int n) {
    int value = 0;
    for (int i = 0; i < 7; i++) {
        for (int j = 0; j < n; j++) {
        value += j;
        }
    }
    return value + n / 2;
}
```

- What is the Big-O efficiency for this function?
- O(1)
- O(n)
- O(7n)
- $O(7 n+4)$;
- $O\left(n^{2}\right)$
- $O\left(n^{3}\right)$

Complexity classes

- complexity class: A category of algorithm efficiency based on the algorithm's relationship to the input size N .

Class	Big-Oh	If you double \mathbf{N}, \ldots	Example
constant	$\mathrm{O}(1)$	unchanged	10 ms
logarithmic	$\mathrm{O}\left(\log _{2} \mathrm{~N}\right)$	increases slightly	175 ms
linear	$\mathrm{O}(\mathrm{N})$	doubles	3.2 sec
log-linear	$\mathrm{O}\left(\mathrm{N} \log _{2} \mathrm{~N}\right)$	slightly more than doubles	6 sec
quadratic	$\mathrm{O}\left(\mathrm{N}^{2}\right)$	quadruples	1 min 42 sec
cubic	$\mathrm{O}\left(\mathrm{N}^{3}\right)$	multiplies by 8	55 min
\ldots	\ldots	\ldots	\ldots
exponential	$\mathrm{O}\left(2^{\mathrm{N}}\right)$	multiplies drastically	$5 * 10^{61}$ years

Complexity classes

Range algorithm

What complexity class is this algorithm? Can it be improved?

```
// returns the range of values in the given array;
// the difference between elements furthest apart
// example: range({17, 29, 11, 4, 20, 8}) is 25
public static int range(int[] numbers) {
    int maxDiff = 0; // look at each pair of values
    for (int i = 0; i < numbers.length; i++) {
        for (int j = 0; j < numbers.length; j++) {
        int diff = Math.abs(numbers[j] - numbers[i]);
        if (diff > maxDiff) {
            maxDiff = diff;
        }
    }
}
return diff;
```

\}

Range algorithm

What complexity class is this algorithm? Can it be improved?

```
// returns the range of values in the given array;
// the difference between elements furthest apart
// example: range({17, 29, 11, 4, 20, 8}) is 25
public static int range(int[] numbers) {
    int maxDiff = 0; // look at each pair of values
    for (int i = 0; i < numbers.length; i++) {
        for (int j = 0; j < numbers.length; j++) {
        int diff = Math.abs(numbers[j] - numbers[i]);
        if (diff > maxDiff) {
            maxDiff = diff;
        }
    }
}
return diff;
```

\}

Range algorithm 2

The last algorithm is $\mathbf{O}\left(\mathbf{N}^{2}\right)$. A slightly better version:

```
// returns the range of values in the given array;
// the difference between elements furthest apart
// example: range({17, 29, 11, 4, 20, 8}) is 25
public static int range(int[] numbers) {
int maxDiff = 0; // look at each pair of values
for (int i = 0; i < numbers.length; i++) {
    for (int j = i + 1; j < numbers.length; j++) {
        int diff = Math.abs(numbers[j] - numbers[i]);
        if (diff > maxDiff) {
                        maxDiff = diff;
        }
    }
}
return diff;
```

\}

Range algorithm 3

This final version is $\mathbf{O (N)}$. It runs MUCH faster:

```
// returns the range of values in the given array;
// example: range({17, 29, 11, 4, 20, 8}) is 25
public static int range(int[] numbers) {
    int max = numbers[0]; // find max/min values
    int min = max;
    for (int i = 1; i < numbers.length; i++) {
        if (numbers[i] < min) {
            min = numbers[i];
    }
    if (numbers[i] > max) {
            max = numbers[i];
        }
    }
    return max - min;
```

\}

Runtime of first 2 versions

- Version 1 :

\mathbf{N}	Runtime (ms)
1000	15
2000	47
4000	203
8000	781
16000	3110
32000	12563
64000	49937

- Version 2 :

\mathbf{N}	Runtime (ms)
1000	16
2000	16
4000	110
8000	406
16000	1578
32000	6265
64000	25031

Runtime of 3rd version

- Version 3:

\mathbf{N}	Runtime (ms)
1000	0
2000	0
4000	0
8000	0
16000	0
32000	0
64000	0
128000	0
256000	0
5 I 2000	0
1 e 6	0
2 e 6	16
4 e 6	3 I
8 e 6	47
I .67 e 7	94
3.3 e 7	188
6.5 e 7	453
1.3 e 8	797
2.6 e 8	1578

Searching methods

- Implement the following methods:
- indexOf - returns first index of element, or -1 if not found
- contains - returns true if the list contains the given int value
- Why do we need isEmpty and contains when we already have indexOf and size?
- Adds convenience to the client of our class:

```
// less elegant
if (myList.size() == 0) {
if (myList.indexOf(42) >= 0) { if (myList.contains(42)) {
```


Sequential search

- sequential search: Locates a target value in an array / list by examining each element from start to finish. Used in indexOf.
- How many elements will it need to examine?
- Example: Searching the array below for the value 42:

index	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
value	-4	2	7	10	15	20	22	25	30	36	42	50	56	68	85	92	103

- The array is sorted. Could we take advantage of this?

Sequential search

- What is its complexity class?

```
public int indexOf(int value) {
    for (int i = 0; i < size; i++) {
        if (elementData[i] == value) {
            return i;
        }
    }
    return -1; // not found
}
```

index	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
value	-4	2	7	10	15	20	22	25	30	36	42	50	56	68	85	92	103

- On average, "only" N/2 elements are visited
- $1 / 2$ is a constant that can be ignored

Binary search (13.1)

- binary search: Locates a target value in a sorted array or list by successively eliminating half of the array from consideration.
- How many elements will it need to examine?
- Example: Searching the array below for the value 42:

index	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
value	-4	2	7	10	15	20	22	25	30	36	42	50	56	68	85	92	
	min								mid								max

Arrays.binarySearch

// searches an entire sorted array for a given value
// returns its index if found; a negative number if not found
// Precondition: array is sorted Arrays.binarysearch (array, value)
// searches given portion of a sorted array for a given value
// examines minIndex (inclusive) through maxIndex (exclusive)
// returns its index if found; a negative number if not found
// Precondition: array is sorted
Arrays.binarySearch (array, minIndex, maxIndex, value)

- The binarySearch method in the Arrays class searches an array very efficiently if the array is sorted.
- You can search the entire array, or just a range of indexes (useful for "unfilled" arrays such as the one in ArrayIntList)

Using binarySearch

```
// index (llllllllllllllllllllll
int[] a ={-4, 2, 7, 9, 15, 19, 25, 28, 30, 36, 42, 50, 56, 68, 85, 92};
int index = Arrays.binarySearch(a, 0, 16, 42); // index1 is 10
int index2 = Arrays.binarySearch(a, 0, 16, 21); // index2 is -7
```

- binarySearch returns the index where the value is found
- if the value is not found, binarySearch returns:
-(insertionPoint + 1)
- where insertionPoint is the index where the element would have been, if it had been in the array in sorted order.
- To insert the value into the array, negate insertionPoint +1
int indexToInsert21 = -(index2 + 1); // 6

Binary search

- binary search successively eliminates half of the elements.
- Algorithm: Examine the middle element of the array.
- If it is too big, eliminate the right half of the array and repeat.
- If it is too small, eliminate the left half of the array and repeat.
- Else it is the value we're searching for, so stop.
- Which indexes does the algorithm examine to find value $\mathbf{4 2}$?
- What is the runtime complexity class of binary search?

Binary search runtime

- For an array of size N, it eliminates $1 / 2$ until 1 element remains.

N, N/2, N/4, N/8, ..., 4, 2, 1

- How many divisions does it take?
- Think of it from the other direction:
- How many times do I have to multiply by 2 to reach N ?

$$
1,2,4,8, \ldots, N / 4, N / 2, N
$$

- Call this number of multiplications "x".

$$
\begin{aligned}
& 2^{x}=N \\
& x=\log _{2} N
\end{aligned}
$$

- Binary search is in the logarithmic complexity class.

Collection efficiency

- Efficiency of our Java's ArrayList and LinkedList methods:

Method	ArrayList	LinkedList
add	$\mathrm{O}(1)^{*}$	$\mathrm{O}(1)$
add (index, value)	$\mathrm{O}(\mathrm{N})$	$\mathrm{O}(\mathrm{N})$
indexOf	$\mathrm{O}(\mathrm{N})$	$\mathrm{O}(\mathrm{N})$
get	$\mathrm{O}(1)$	$\mathrm{O}(\mathrm{N})$
remove	$\mathrm{O}(\mathrm{N})$	$\mathrm{O}(\mathrm{N})$
set	$\mathrm{O}(1)$	$\mathrm{O}(\mathrm{N})$
size	$\mathrm{O}(1)$	$\mathrm{O}(1)$

* Most of the time!

Throw Back: Unique words

- Recall two weeks ago when we counted the number of unique words in a file. Our first attempt

```
public static int uniqueWords(Scanner input) {
    List<String> words = new LinkedList<String>();
    while (input.hasNext()) {
        String word = input.next();
        if (!words.contains(word)) {
        words.add(word);
    }
    }
    return words.size();
```

\}

Throw Back: Unique words

- Recall two weeks ago when we counted the number of unique words in a file. Our second attempt
- We saw briefly that operations on HashSet are O(1)

```
public static int uniqueWords(Scanner input) {
    Set<String> words = new HashSet<String>();
    while (input.hasNext()) {
        String word = input.next();
        words.add(word);
    }
    return words.size();
}
```


Max subsequence sum

- Write a method maxsum to find the largest sum of any contiguous subsequence in an array of integers.
- Easy for all positives: include the whole array.
- What if there are negatives?

index	0	1	2	3	4	5	6	7	8
value	2	1	-4	10	15	-2	22	-8	5

Largest sum: $10+15+-2+22=45$

- (Let's define the max to be 0 if the array is entirely negative.)
- Ideas for algorithms?

Algorithm 1 pseudocode

```
maxSum(a):
max = 0.
for each starting index i:
    for each ending index j:
    sum = add the elements from a[i] to a[j].
    if sum > max,
    max = sum.
```

return max.

index	0	1	2	3	4	5	6	7	8
value	2	1	-4	10	15	-2	22	-8	5

Algorithm 1 code

- What complexity class is this algorithm?
- $\mathbf{O}\left(\mathbf{N}^{\mathbf{3}}\right)$. Takes a few seconds to process 2000 elements.

```
public static int maxSum1(int[] a) {
    int max = 0;
    for (int i = 0; i < a.length; i++) {
        for (int j = i; j < a.length; j++) {
        // sum = add the elements from a[i] to a[j].
        int sum = 0;
        for (int k = i; k <= j; k++) {
                        sum += a[k];
        }
        if (sum > max) {
        max = sum;
        }
        }
    }
    return max;
}
```


Flaws in algorithm 1

- Observation: We are redundantly re-computing sums.
- For example, we compute the sum between indexes 2 and 5:

$$
a[2]+a[3]+a[4]+a[5]
$$

- Next we compute the sum between indexes 2 and 6: $a[2]+a[3]+a[4]+a[5]+a[6]$
- We already had computed the sum of 2-5, but we compute it again as part of the 2-6 computation.
- Let's write an improved version that avoids this flaw.

index	0	1	2	3	4	5	6	7	8
value	2	1	-4	10	15	-2	22	-8	5

Algorithm 2 code

- What complexity class is this algorithm?
- $\mathbf{O}\left(\mathbf{N}^{2} \mathbf{)}\right.$. Can process tens of thousands of elements per second.

```
public static int maxSum2(int[] a) {
    int max = 0;
    for (int i = 0; i < a.length; i++) {
        int sum = 0;
        for (int j = i; j < a.length; j++) {
                sum += a[j];
                if (sum > max) {
                        max = sum;
            }
        }
    }
    return max;
}
```

index	0	1	2	3	4	5	6	7	8
value	2	1	-4	10	15	-2	22	-8	5

A clever solution

- Claim 1 : A max range cannot start with a negative-sum range.

- Claim 2 : If sum $(\mathrm{i}, \mathrm{j}-1) \geq 0$ and $\operatorname{sum}(\mathrm{i}, \mathrm{j})<0$, any max range that ends at $j+1$ or higher cannot start at any of i through j.

| \ldots | $j-1$ | j | $j+1$ | \ldots |
| :---: | :---: | :---: | :---: | :---: |\quad k

- Together, these observations lead to a very clever algorithm...

Algorithm 3 code

- What complexity class is this algorithm?
- $\mathbf{O (N)}$. Handles many millions of elements per second!

```
public static int maxSum3(int[] a) {
    int max = 0;
    int sum = 0;
    int i = 0;
    for (int j = 0; j < a.length; j++) {
        if (sum < 0) { // if sum becomes negative, max range
        i = j; // cannot start with any of i - j-1
        sum = 0; // (Claim 2)
        }
        sum += a[j];
        if (sum > max) {
        max = sum;
        }
    }
    return max;
}
```

