Building Java Programs

Complex Linked List Code
reading: 16.2 - 16.3

|

linkedlntl i (1NE 11)

* Write a constructor for LinkedIntList that accepts an int
n parameter and makes a list of the number from 0 to n

e new LinkedIntList (3) .

front = r

data | next data | next
| 3 | 2

data | next | data | next |
1 0

e —————— T—
addSorted

» Write a method addsorted that accepts an int as a
parameter and adds it to a sorted list in sorted order.
o Before addSorted (17) :

_ data | next data | next data | next
front = i | |

element 0 element 1 element 2

o After addSorted (17) :

front =-7_>data next data | next| |data|next data | next
| -4 | 8 17 22

element O element 1 element 2 element 3

* Adding to the middle of a list:
aGdasSorred bl

front = r

data | next
-4

element 0

data | next
8

element 1

» Which references must be changed?
» What sort of loop do we need?
» When should the loop stop?

The common case

data | next
22

element 2

First attempt

* An incorrect loop:

ListNode current = ftront:;
while (current.data < wvalue) {
NN S Al S el BT = e A B = e

} current

_ data | next data | next data | next
front = e
-]]Zi

element 0 element 1 element 2

* What is wrong with this code?
» The loop stops too late to affect the list in the right way.

changing a list

* There are only two ways to change a linked list:
Change the value of front (modify the front of the list)

Change the value of <node>.next (modify middle or end of list
to point somewhere else)

e Implications:
To add in the middle, need a reference to the previous node
Front is often a special case

Key idea: peeking ahead

» Corrected version of the loop:

ListNode current — fronk;

while (current.next.data < value) {
current = current.next;

} current

data | next data | next data | next
front = E
=]]EH

element 0 element 1 element 2

» This time the loop stops in the right place.

* Adding to the end of a list:
addSorted (42)

_ data | next data | next data | next
front = e

element 0 element 1 element 2

Exception in thread "main": java.lang.NullPointerException

» Why does our code crash?
» What can we change to fix this case?

Multiple loop tests

e A correction to our loop:

ListNode ecurrent - front;
while (current.next !'= null &é&
current.next.data < value) {
Gl s = oty e i e current

v

data | next data | next data | next
front = E

element O element 1 element 2

» We must check for a next of null before we check its .data.

10

Third case to handle

e Adding to the front of a list:
gadsorbed =10

front = m data | next data | next data | next
-4 8 22

element O element 1 element 2

« What will our code do in this case?
 What can we change to fix it?

11

Handling the front

e Another correction to our code:

if (value <= front.data) {
// insert at front of list
BNt s new s ENode ta e i Eponi) -
} else {
// insert in middle of list
histNode current = fronkt;
while (current.next != null &&
current.next.data < value) {
current = current.next;

» Does our code now handle every possible case?

12

/

Fourth case to handle

e Adding to (the front of) an empty list:
addSorted (42)

front =

What will our code do in this case?
What can we change to fix it?

13

Final version of code

// Adds given value to list in sorted order.
// Precondition: Existing elements are sorted
Pl esveddiaacd S o e o i vl e

1f (front == null || value <= front.data) {
// insert at front of list
front = new ListNode (value, front):;
} else {
// insert in middle of list
TinstNode current: = "front:
while (current.next != null &&

b ST A S a R e S D s e e e S B M R e e
MR e R S PR S TN E TR

14

Common cases

* middle: "typical" case in the middle of an existing list

* back: special case at the back of an existing list
» front: special case at the front of an existing list

o empty: special case of an empty list

15

16

