
Building Java Programs

Complex Linked List Code
reading: 16.2 – 16.3

2

3

 Write a constructor for LinkedIntList that accepts an int
n parameter and makes a list of the number from 0 to n
 new LinkedIntList(3) :

data next

1

LinkedIntList(int n)

front = data next

3
data next

0

data next

2

4

addSorted
 Write a method addSorted that accepts an int as a

parameter and adds it to a sorted list in sorted order.

 Before addSorted(17) :

 After addSorted(17) :

front = data next

-4

data next

8
data next

22

element 0 element 1 element 2

front = data next

-4

data next

17
data next

22

element 0 element 2 element 3

data next

8

element 1

5

The common case
 Adding to the middle of a list:

addSorted(17)

 Which references must be changed?
 What sort of loop do we need?
 When should the loop stop?

front = data next

-4

data next

8
data next

22

element 0 element 1 element 2

6

First attempt
 An incorrect loop:

ListNode current = front;
while (current.data < value) {

current = current.next;
}

 What is wrong with this code?
 The loop stops too late to affect the list in the right way.

front = data next

-4

data next

8
data next

22

element 0 element 1 element 2

current

7

changing a list
 There are only two ways to change a linked list:

 Change the value of front (modify the front of the list)
 Change the value of <node>.next (modify middle or end of list

to point somewhere else)

 Implications:
 To add in the middle, need a reference to the previous node
 Front is often a special case

8

Key idea: peeking ahead
 Corrected version of the loop:

ListNode current = front;
while (current.next.data < value) {

current = current.next;
}

 This time the loop stops in the right place.

front = data next

-4

data next

8
data next

22

element 0 element 1 element 2

current

9

Another case to handle
 Adding to the end of a list:

addSorted(42)

Exception in thread "main": java.lang.NullPointerException

 Why does our code crash?
 What can we change to fix this case?

front = data next

-4

data next

8
data next

22

element 0 element 1 element 2

10

Multiple loop tests
 A correction to our loop:

ListNode current = front;
while (current.next != null &&

current.next.data < value) {
current = current.next;

}

 We must check for a next of null before we check its .data.

front = data next

-4

data next

8
data next

22

element 0 element 1 element 2

current

11

Third case to handle
 Adding to the front of a list:

addSorted(-10)

 What will our code do in this case?
 What can we change to fix it?

front = data next

-4

data next

8
data next

22

element 0 element 1 element 2

12

Handling the front
 Another correction to our code:

if (value <= front.data) {
// insert at front of list
front = new ListNode(value, front);

} else {
// insert in middle of list
ListNode current = front;
while (current.next != null &&

current.next.data < value) {
current = current.next;

}
}

 Does our code now handle every possible case?

13

Fourth case to handle
 Adding to (the front of) an empty list:

addSorted(42)

 What will our code do in this case?
 What can we change to fix it?

front =

14

Final version of code
// Adds given value to list in sorted order.
// Precondition: Existing elements are sorted
public void addSorted(int value) {

if (front == null || value <= front.data) {
// insert at front of list
front = new ListNode(value, front);

} else {
// insert in middle of list
ListNode current = front;
while (current.next != null &&

current.next.data < value) {
current = current.next;

}
}

}

15

Common cases
 middle: "typical" case in the middle of an existing list

 back: special case at the back of an existing list

 front: special case at the front of an existing list

 empty: special case of an empty list

16

