Building Java Programs

Binary Trees

reading: 17.1 - 17.3

oSBT g RS

Ry

Trees In computer science

=) My Documents

e TreeMap and TreeSet implementations = & _badup

= csel100

« folders/files on a computer @ 0 csel42

= = cseld3
=2 09wi

» family genealogy; organizational charts % £ assassin

o Al: decision trees

o compilers: parse tree
a=(b+c)*d; @

» cell phone T9

) exams
) grades
=3 handouts
= £ homework
3 1-sortedintlist

Names:
Joe
Johin

Jane o
~ @ @

Trees

tree: A directed, acyclic structure of linked nodes.
directed : Has one-way links between nodes.
acyclic : No path wraps back around to the same node twice.

binary tree: One where each node has at most two
children.

root

Recursive definition: A tree is either:
empty (null), or

a root node that contains:
- data,
- a left subtree, and
- a right subtree.

(The left and/or right e e e 0

subtree could be empty.)

e

s

Recursive data structure

» Recursive definition: A tree is either:
empty (null), or
a root node that contains:
- data,

. a left tree, and
- a right tree

root root root root root

EXAXN

Terminology

node: an object containing a data value and left/right
children

root: topmost node of a tree

leaf: a node that has no children

branch: any internal node; neither the root nor a jceaf
roo

parent: a node that refers to this one
child: a node that this node refers to level 1
sibling: a node with a common parent

subtree: the smaller tree of nodes on level 2 e
the left or right of the current node

height: length of the longest path

from the root to any node level 3 0 e @ 0
level or depth: length of the path

from a root to a given node

g

A tree node for integers

» A basic tree node object stores data, refers to left/right
- Multiple nodes can be linked together into a larger tree

left | data | right
// 2~
left | data | right left | data | right
59 27 N
S
left | data | right

86

IntTreeNode class

B e e loidle ol etE T e el oie che e e m e e e e e e
public class IntTreeNode {

publicAdntidata; ldataystored at th s node
public IntTreeNode left; // reference to left subtree
public IntTreeNode right; // reference to right subtree

// Constructs a leaf node with the given data.
public IntTreeNode (int data) {

B (T PRSI 0 Vol s el Y A A W B A A A Vi
}

// Constructs a branch node with the given data and links.
public IntTreeNode (int data, IntTreeNode left,
IntTreeNode right) {
Ehszervdiigaa=ains e
Yedliala = A ool e e P
e b A D N e A G Al

) left | data | right

e

ITntTree class

L NI RN oA) T | S e S G W o G o A S O O S VA 6 G M0, SV ol e ey Sy e BV (A e

public class IntTree {
private IntTreeNode overallRoot;

methods

Client code talks to the IntTree,
not to the node objects inside it.

Methods of the IntTree create
and manipulate the nodes,

their data and links between them.

// null for an empty tree

overallRoot

!

/@D\
®O © 0

e

PFIDL IntTree

« We want to write a method that prints out the contents of

dnN IntTree.
» Here is the output we want overallRoot
T oAby 69824l Q
private void print (IntTreeNode root) {

if (root != null) { ‘///////

System.out.print (root.data + " ")

print (root.left) ;
print (root.right) ;
}

Traversals

Orderings for traversals
pre-order: process root node, then its left/right subtrees
in-order: process left subtree, then root node, then right
post-order: process left/right subtrees, then root node

private void print (IntTreeNode root) { overallRoot
3t Gale o Nl i a WO HI B P
System.out.print (root.data + " ");
PR oot e @
eh sk et ValeN st sitia da bt i

} & (9
pre-order: 17 41 29 6 9 81 40 @ e @ @

10

Traversals

Orderings for traversals
pre-order: process root node, then its left/right subtrees
in-order: process left subtree, then root node, then right
post-order: process left/right subtrees, then root node

private void print (IntTreeNode root) { overallRoot
5 B (A @ N A A=y A 41 P 9 B
PR ee e
System.out.print (root.data + " "); @
eeskian sl e Yelmr b bsdated 0

} & 9

Lh

Traversals

Orderings for traversals
pre-order: process root node, then its left/right subtrees
in-order: process left subtree, then root node, then right
post-order: process left/right subtrees, then root node

private void print (IntTreeNode root) { overallRoot
5 B (A @ N A A=y A 41 P 9 B
PR ee e
PEME AT OO G EN; @
System.out.print (root.data + " ");

} 4 (9
post-order: 29 6 41 81 40 9 17
2 (6 @) @9

12

Exercise

Give pre-, in-, and post-order
traversals for the following tree:

pre: 42 1527 48986 125 3 39
in: 1548 2742865129 3 39
post: 48 27 155 12 86 39 3 42

overallRoot

13

e

/ . 2
Traversal trick
- To quickly generate a traversal: overallRoot
Trace a path around the tree.
As you pass a node on the @

proper side, process it.

- pre-order: left side @ 9

. in-order: bottom

- post-order: right side @ e @ @

» pre-order: 17 41 29 6 9 81 40
e in-order: 29 41 6 17 81 9 40
» post-order: 29 6 41 81 40 9 17

14

Exercise

- Add a method contains to the IntTree class that searches
the tree for a given integer, returning true if it is found.

If an IntTree variable tree referred to the tree below, the
following calls would have these results:

e tree.
e tree.
e tree.

e Tree.

contailns
contailns
contains

CO S

overallRoot
— true

—> true
— false
— false

87 29
@ ® @ @

15

g

Exercise solution

sketiirne ahelibaia e e e s st e Eh oo e e dlen

pubdircrboocancontarnsint wrabue) o
return contains (overallRoot, wvalue) ;

}

private boolean contains (IntTreeNode node, 1int value) {

i1f (node == null) {

return talses // base case: not found here
} else if (node.data == value) {

reburnahrue? Ll base rcases fonnd here
} else {

// recursive case: search left/right subtrees
return contains(node.left, value) ||
contains (node.right, wvalue) ;

16

g

Template for tree methods

public class IntTree {
private IntTreeNode overallRoot;

public type name (parameters) |
name (overallRoot, parameters) ;
}

private type name (IntTreeNode root, parameters) {

}
}

» Tree methods are often implemented recursively
with a public/private pair
the private version accepts the root node to process

17

