
2

Exercise: fourAB
 Write a method fourAB that prints out all strings of length

4 composed only of a’s and b’s

 Example Output

aaaa baaa

aaab baab

aaba baba

aabb babb

abaa bbaa

abab bbab

abba bbba

abbb bbbb

3

Decision Tree

a

aa

aaa

aaab

aab

aaba aabbaaaa

ab
…

b
…

4

Exercise: Dice rolls
 Write a method diceRoll that accepts an integer

parameter representing a number of 6-sided dice to roll,
and output all possible arrangements of values that could
appear on the dice.

diceRoll(2); diceRoll(3);

[1, 1]

[1, 2]

[1, 3]

[1, 4]

[1, 5]

[1, 6]

[2, 1]

[2, 2]

[2, 3]

[2, 4]

[2, 5]

[2, 6]

[3, 1]

[3, 2]

[3, 3]

[3, 4]

[3, 5]

[3, 6]

[4, 1]

[4, 2]

[4, 3]

[4, 4]

[4, 5]

[4, 6]

[5, 1]

[5, 2]

[5, 3]

[5, 4]

[5, 5]

[5, 6]

[6, 1]

[6, 2]

[6, 3]

[6, 4]

[6, 5]

[6, 6]

[1, 1, 1]

[1, 1, 2]

[1, 1, 3]

[1, 1, 4]

[1, 1, 5]

[1, 1, 6]

[1, 2, 1]

[1, 2, 2]

...

[6, 6, 4]

[6, 6, 5]

[6, 6, 6]

5

Examining the problem
 We want to generate all possible sequences of values.

for (each possible first die value):

for (each possible second die value):

for (each possible third die value):

...

print!

 This is called a depth-first search

 How can we completely explore such a large search space?

6

A decision tree
chosen available

- 4 dice

1 3 dice

1, 1 2 dice

1, 1, 1 1 die

1, 1, 1, 1

1, 2 2 dice 1, 3 2 dice 1, 4 2 dice

2 3 dice

1, 1, 2 1 die 1, 1, 3 1 die

1, 1, 1, 2 1, 1, 3, 1 1, 1, 3, 2

1, 4, 1 1 die
...

......

...

... ...

... ...

10

Backtracking
 backtracking: Finding solution(s) by trying partial

solutions and then abandoning them if they are not
suitable.

 a "brute force" algorithmic technique (tries all paths)

 often implemented recursively

Applications:

 producing all permutations of a set of values

 parsing languages

 games: anagrams, crosswords, word jumbles, 8 queens

 combinatorics and logic programming

12

Backtracking strategies
 When solving a backtracking problem, ask these questions:

 What are the "choices" in this problem?

 What is the "base case"? (How do I know when I'm out of
choices?)

 How do I "make" a choice?

 Do I need to create additional variables to remember my choices?

 Do I need to modify the values of existing variables?

 How do I explore the rest of the choices?

 Do I need to remove the made choice from the list of choices?

 Once I'm done exploring, what should I do?

 How do I "un-make" a choice?

13

Exercise: Dice roll sum
 Write a method diceSum similar to diceRoll, but it also

accepts a desired sum and prints only arrangements that
add up to exactly that sum.

diceSum(2, 7); diceSum(3, 7);

[1, 1, 5]

[1, 2, 4]

[1, 3, 3]

[1, 4, 2]

[1, 5, 1]

[2, 1, 4]

[2, 2, 3]

[2, 3, 2]

[2, 4, 1]

[3, 1, 3]

[3, 2, 2]

[3, 3, 1]

[4, 1, 2]

[4, 2, 1]

[5, 1, 1]

[1, 6]

[2, 5]

[3, 4]

[4, 3]

[5, 2]

[6, 1]

14

Consider all paths?

chosen available desired sum

- 3 dice 5

1 2 dice

1, 1 1 die

1, 1, 1

1, 2 1 die 1, 3 1 die 1, 4 1 die

6 2 dice

...

2 2 dice 3 2 dice 4 2 dice 5 2 dice

1, 5 1 die 1, 6 1 die

1, 1, 2 1, 1, 3 1, 1, 4 1, 1, 5 1, 1, 6

1, 6, 1 1, 6, 2

15

Optimizations
 We need not visit every branch of the decision tree.

 Some branches are clearly not going to lead to success.

 We can preemptively stop, or prune, these branches.

 Inefficiencies in our dice sum algorithm:

 Sometimes the current sum is already too high.

 (Even rolling 1 for all remaining dice would exceed the sum.)

 Sometimes the current sum is already too low.

 (Even rolling 6 for all remaining dice would not reach the sum.)

 When finished, the code must compute the sum every time.

 (1+1+1 = ..., 1+1+2 = ..., 1+1+3 = ..., 1+1+4 = ..., ...)

16

New decision tree
chosen available desired sum

- 3 dice 5

1 2 dice

1, 1 1 die

1, 1, 1

1, 2 1 die 1, 3 1 die 1, 4 1 die

6 2 dice

...

2 2 dice 3 2 dice 4 2 dice 5 2 dice

1, 5 1 die 1, 6 1 die

1, 1, 2 1, 1, 3 1, 1, 4 1, 1, 5 1, 1, 6

1, 6, 1 1, 6, 2

