
3

Sum this up for me
� Let’s write a method to calculate the sum from 1 to some n

public static int sum1(int n) {
int sum = 0;
for (int i = 1; i <= n; i++) {

sum += i;
}

return sum;
}

� Gauss also has a way of solving this
public static int sum2(int n) {

return n * (n + 1) / 2;
}

� Which one is more efficient?

4

Runtime Efficiency (13.2)
� efficiency: measure of computing resources used by code.

� can be relative to speed (time), memory (space), etc.
� most commonly refers to run time

� We want to be able to compare different algorithms to see
which is more efficient

5

Efficiency Try 1
� Let’s time the methods!
n = 1 sum1 took 0ms, sum2 took 0ms

n = 5 sum1 took 0ms, sum2 took 0ms
n = 10 sum1 took 0ms, sum2 took 0ms

n = 100 sum1 took 0ms, sum2 took 0ms
n = 1,000 sum1 took 0ms, sum2 took 0ms
n = 10,000,000 sum1 took 10ms, sum2 took 0ms

n = 100,000,000 sum1 took 47ms, sum2 took 0ms
n = 2,147,483,647 sum1 took 784ms, sum2 took 0ms

� Let’s time the methods!
n = 1 sum1 took 0ms, sum2 took 0ms

n = 5 sum1 took 0ms, sum2 took 0ms
n = 10 sum1 took 0ms, sum2 took 0ms

n = 100 sum1 took 0ms, sum2 took 0ms
n = 1,000 sum1 took 1ms, sum2 took 0ms
n = 10,000,000 sum1 took 8ms, sum2 took 0ms

n = 100,000,000 sum1 took 43ms, sum2 took 0ms
n = 2,147,483,647 sum1 took 804ms, sum2 took 0ms

� Let’s time the methods!
n = 1 sum1 took 0ms, sum2 took 0ms

n = 5 sum1 took 0ms, sum2 took 0ms
n = 10 sum1 took 0ms, sum2 took 0ms

n = 100 sum1 took 0ms, sum2 took 0ms
n = 1,000 sum1 took 1ms, sum2 took 0ms
n = 10,000,000 sum1 took 3ms, sum2 took 0ms

n = 100,000,000 sum1 took 121ms, sum2 took 0ms
n = 2,147,483,647 sum1 took1570ms, sum2 took 0ms

� Downsides
� Different computers give different run times
� The same computer gives different results!!! D:<

6

Efficiency – Try 2
� Let’s count number of “steps” our algorithm takes to run
� Assume the following:

� Any single Java statement takes same amount of time to run.
� int x = 5;

� boolean b = (5 + 1 * 2) < 15 + 3;

� System.out.println(“Hello”);

� A loop's runtime, if the loop repeats N times, is N times the
runtime of the statements in its body.

� A method call's runtime is measured by the total runtime of
the statements inside the method's body.

7

statement1;
statement2;
statement3;

for (int i = 1; i <= N; i++) {
statement4;

}

for (int i = 1; i <= N; i++) {
statement5;
statement6;
statement7;

}

Efficiency examples

3

N

3N

4N + 3

8

Efficiency examples 2
for (int i = 1; i <= N; i++) {

for (int j = 1; j <= N; j++) {
statement1;

}
}

for (int i = 1; i <= N; i++) {
statement2;
statement3;
statement4;
statement5;

}

� How many statements will execute if N = 10? If N = 1000?

N2 + 4N

N2

4N

9

Sum this up for me
� Let’s write a method to calculate the sum from 1 to some n

public static int sum1(int n) {
int sum = 0;
for (int i = 1; i <= n; i++) {

sum += i;
}

return sum;
}

� Gauss also has a way of solving this
public static int sum2(int n) {

return n * (n + 1) / 2;
}

� Which one is more efficient?

N

1

1

1

N + 2

1

10

Visualizing Difference

11

Algorithm growth rates (13.2)
� We measure runtime in proportion to the input data size, N.

� growth rate: Change in runtime as N changes.

� Say an algorithm runs 0.4N3 + 25N2 + 8N + 17
statements.
� Consider the runtime when N is extremely large .

� We ignore constants like 25 because they are tiny next to N.
� The highest-order term (N3) dominates the overall runtime.

� We say that this algorithm runs "on the order of" N3.
� or O(N3) for short ("Big-Oh of N cubed")

12

Complexity classes
� complexity class: A category of algorithm efficiency

based on the algorithm's relationship to the input size N.

Class Big-Oh If you double N, ... Example
constant O(1) unchanged 10ms
logarithmic O(log2 N) increases slightly 175ms
linear O(N) doubles 3.2 sec
log-linear O(N log2 N) slightly more than doubles 6 sec

quadratic O(N2) quadruples 1 min 42 sec
cubic O(N3) multiplies by 8 55 min
...
exponential O(2N) multiplies drastically 5 * 1061 years

13

Complexity classes

http://recursive-design.com/blog/2010/12/07/comp-sci-101-big-o-notation/ - post about a Google interview

http://recursive-design.com/blog/2010/12/07/comp-sci-101-big-o-notation/

21

Sequential search
� sequential search: Locates a target value in an array /

list by examining each element from start to finish. Used in
indexOf.

� How many elements will it need to examine?

� Example: Searching the array below for the value 42:

� The array is sorted. Could we take advantage of this?

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

i

22

Binary search (13.1)
� binary search: Locates a target value in a sorted array or

list by successively eliminating half of the array from
consideration.

� How many elements will it need to examine?

� Example: Searching the array below for the value 42:

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

min mid max

25

Sequential search
� What is its complexity class?

public int indexOf(int value) {
for (int i = 0; i < size; i++) {

if (elementData[i] == value) {
return i;

}
}
return -1; // not found

}

� On average, "only" N/2 elements are visited
� 1/2 is a constant that can be ignored

N

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

26

Binary search
� binary search successively eliminates half of the

elements.

� Algorithm: Examine the middle element of the array.
� If it is too big, eliminate the right half of the array and repeat.
� If it is too small, eliminate the left half of the array and repeat.
� Else it is the value we're searching for, so stop.

� Which indexes does the algorithm examine to find value 42?
� What is the runtime complexity class of binary search?

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

min mid max

27

Binary search runtime
� For an array of size N, it eliminates ½ until 1 element

remains.
N, N/2, N/4, N/8, ..., 4, 2, 1

� How many divisions does it take?

� Think of it from the other direction:
� How many times do I have to multiply by 2 to reach N?

1, 2, 4, 8, ..., N/4, N/2, N
� Call this number of multiplications "x".

2x= N
x = log2 N

� Binary search is in the logarithmic complexity class.

28

� Efficiency of our Java's ArrayList and LinkedList methods:

* Most of the time!
** Assuming we have a reference to the back of the list
*** Assuming we have a size field

Collection efficiency

Method ArrayList LinkedList
add
add(index, value)
indexOf
get
remove
set
size

Method ArrayList LinkedList
add O(1)* O(1)**
add(index, value) O(N) O(N)
indexOf O(N) O(N)
get O(1) O(N)
remove O(N) O(N)
set O(1) O(N)
size O(1) O(1)***

