Sum this up for me

- Let's write a method to calculate the sum from 1 to some n

```
public static int sum1(int n) {
    int sum = 0;
    for (int i = 1; i <= n; i++) {
        sum += i;
    }
    return sum;
}
```

- Gauss also has a way of solving this public static int sum2(int n) \{

```
    return n * (n + 1) / 2;
```

\}

- Which one is more efficient?

Runtime Efficiency (13.2)

- efficiency: measure of computing resources used by code.
- can be relative to speed (time), memory (space), etc.
- most commonly refers to run time
- We want to be able to compare different algorithms to see which is more efficient

Efficiency Try 1

- Let's time the methods!

$\mathrm{n}=1$	sum1 took	Oms,	sum2	took 0ms
$\mathrm{n}=5$	sum1 took	0 ms ,	sum2	took 0ms
$\mathrm{n}=10$	sum1 took	0 ms ,	sum2	took 0ms
$\mathrm{n}=100$	sum1 took	0 ms ,	sum 2	took 0ms
$\mathrm{n}=1,000$	sum1 took	Qms,	sum2	took 0ms
$\mathrm{n}=10,000,000$	sum1 took	18 ms ,	sum2	took 0 ms
$\mathrm{n}=100,000,000$	sum1 took	12 Bms ,	sum2	took 0ms
$\mathrm{n}=2,147,483,647$	sum1 took1	800ms,	sum2	took 0ms

- Downsides
- Different computers give different run times
- The same computer gives different results!!! D: <

Efficiency - Try 2

- Let's count number of "steps" our algorithm takes to run
- Assume the following:
- Any single Java statement takes same amount of time to run.
- int $x=5$;
- boolean $\mathrm{b}=(5+1 * 2)<15+3$;
- System.out.println("Hello");
- A loop's runtime, if the loop repeats N times, is N times the runtime of the statements in its body.
- A method call's runtime is measured by the total runtime of the statements inside the method's body.

Efficiency examples

Efficiency examples 2

```
for (int i = 1; i <= N; i++) {
    for (int j = 1; j <= N; j++)
        statement1;
    }
}
for (int i = 1; i <= N; i++) {
    statement2;
    statement3;
    statement4;
    statement5;
}
- How many statements will execute if \(\mathrm{N}=10\) ? If \(\mathrm{N}=1000\) ?
```


Sum this up for me

- Let's write a method to calculate the sum from 1 to some n

```
public static int sum1(int n) {
    int sum = 0;}1
    for (int i = 1; i <= n; i++) {
        sum += i;
    }
    return sum;}1
}
```

- Gauss also has a way of solving this

```
public static int sum2(int n)
    return n * (n + 1) / 2; } 1
```

\}

Visualizing Difference

Comparing sum1 and sum2

- sum1
- sum2

Algorithm growth rates (13.2)

- We measure runtime in proportion to the input data size, N.
- growth rate: Change in runtime as N changes.
- Say an algorithm runs $\mathbf{0 . 4} \mathbf{N}^{\mathbf{3}}+\mathbf{2 5} \mathbf{N}^{\mathbf{2}}+\mathbf{8 N}+\mathbf{1 7}$ statements.
- Consider the runtime when N is extremely large .
- We ignore constants like 25 because they are tiny next to N.
- The highest-order term (N^{3}) dominates the overall runtime.
- We say that this algorithm runs "on the order of" N3.
- or $\mathbf{O}\left(\mathbf{N}^{3}\right)$ for short ("Big-Oh of N cubed")

Complexity classes

- complexity class: A category of algorithm efficiency based on the algorithm's relationship to the input size N .

Class	Big-Oh	If you double \mathbf{N}, \ldots	Example
constant	$\mathrm{O}(1)$	unchanged	10 ms
logarithmic	$\mathrm{O}(\log 2 \mathrm{~N})$	increases slightly	175 ms
linear	$\mathrm{O}(\mathrm{N})$	doubles	3.2 sec
log-linear	$\mathrm{O}(\mathrm{N}$ log2 N$)$	slightly more than doubles	6 sec
quadratic	$\mathrm{O}\left(\mathrm{N}^{2}\right)$	quadruples	1 min 42 sec
cubic	$\mathrm{O}\left(\mathrm{N}^{3}\right)$	multiplies by 8	55 min
\ldots	\ldots	\ldots	\ldots
exponential	$\mathrm{O}\left(2^{\mathrm{N}}\right)$	multiplies drastically	$5 * 10^{61}$ years

Complexity classes

Sequential search

- sequential search: Locates a target value in an array / list by examining each element from start to finish. Used in indexOf.
- How many elements will it need to examine?
- Example: Searching the array below for the value 42:

index	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
value	-4	2	7	10	15	20	22	25	30	36	42	50	56	68	85	92	103

- The array is sorted. Could we take advantage of this?

Binary search (13.1)

- binary search: Locates a target value in a sorted array or list by successively eliminating half of the array from consideration.
- How many elements will it need to examine?
- Example: Searching the array below for the value 42:

index	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
value	-4	2	7	10	15	20	22	25	30	36	42	50	56	68	85	92	103

Sequential search

- What is its complexity class?

```
public int indexOf(int value)
    for (int i = 0; i < size; i++) {
        if (elementData[i] == value) {
        return i;
    } }
}
```

index	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
value	-4	2	7	10	15	20	22	25	30	36	42	50	56	68	85	92	103

- On average, "only" N/2 elements are visited
- $1 / 2$ is a constant that can be ignored

Binary search

- binary search successively eliminates half of the elements.
- Algorithm: Examine the middle element of the array.
- If it is too big, eliminate the right half of the array and repeat.
- If it is too small, eliminate the left half of the array and repeat.
- Else it is the value we're searching for, so stop.
- Which indexes does the algorithm examine to find value 42 ?
- What is the runtime complexity class of binary search?

index	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
value	-4	2	7	10	15	20	22	25	30	36	42	50	56	68	85	92	103

Binary search runtime

- For an array of size N, it eliminates $1 / 2$ until 1 element remains.

$$
\text { N, N/2, N/4, N/8, ..., 4, 2, } 1
$$

- How many divisions does it take?
- Think of it from the other direction:
- How many times do I have to multiply by 2 to reach N ?

$$
1,2,4,8, \ldots, N / 4, N / 2, N
$$

- Call this number of multiplications "x".

$$
\begin{aligned}
& 2 x=N \\
& x=\log _{2} N
\end{aligned}
$$

- Binary search is in the logarithmic complexity class.

Collection efficiency

- Efficiency of our Java's ArrayList and LinkedList methods:

Method	ArrayList	LinkedList
add	$\mathrm{O}(1)^{*}$	$\mathrm{O}(1)^{* *}$
add (index, value)	$\mathrm{O}(\mathrm{N})$	$\mathrm{O}(\mathrm{N})$
indexOf	$\mathrm{O}(\mathrm{N})$	$\mathrm{O}(\mathrm{N})$
get	$\mathrm{O}(1)$	$\mathrm{O}(\mathrm{N})$
remove	$\mathrm{O}(\mathrm{N})$	$\mathrm{O}(\mathrm{N})$
set	$\mathrm{O}(1)$	$\mathrm{O}(\mathrm{N})$
size	$\mathrm{O}(1)$	$\mathrm{O}(1)^{* * *}$

* Most of the time!
** Assuming we have a reference to the back of the list
*** Assuming we have a size field

