D e

Sum this up for me

e Let's write a method to calculate the sum from 1 to some n

pubErorsEarae s saml b e p e
AN AN B (e B
2 @ N AR G 4 0 e e I s B <Y o VA A o) R
sum += 1;

}

return sum;

* Gauss also has a way of solving this

pulEacystatieyantsam2o b N g

5= 7 A0 b e e Y tived Mt i) i e

e Which one is more efficient?

~ Runtime Efficiency (13.2)

* efficiency: measure of computing resources used by code.
can be relative to speed (time), memory (space), etc.
most commonly refers to run time

* We want to be able to compare different algorithms to see
which is more efficient

/

Efficiency Try 1

e Let's time the methods!

= 1

= 5

= 10

= 100

= 1,000

=l 0000
n— 100,000,000
i o d il 4

pRsssplspl s phnataRissi)
I

e Downsides

suml

suml
suml
suml

suml

suml

suml

suml

took

ok
ik
took

took
VTN

took 123ms,
tookl388ms,

Oms,

Oms,

Oms,

Oms,

Oms,

8ms:;

sum?

sum?’
sum?2
sum?

sum?

sum?

sum?2

sum?

Different computers give different run times

The same computer gives different results!!! D: <

took

took
el
took

took
took

took
took

J

Oms
Oms
Oms
Oms

Oms

Oms

Oms

Oms

Efficiency — Try 2

e Let’s count number of “steps” our algorithm takes to run

e Assume the following:
Any single Java statement takes same amount of time to run.

ST 0 R B e e

T B e e e e A e s

s Sy atem o yprant ina e Helulae oy

A loop's runtime, if the loop repeats N times, is N times the
runtime of the statements in its body.

A method call's runtime is measured by the total runtime of
the statements inside the method's body.

/____—_____//
Efficiency examples

statementl;
statement?2; 3
statement3;

For int 0 =y b <= N: d++)
statement4; N

}
4N + 3

Eoratan by e i N e
statement5;
statementé6;
statement?7; 3N

| — s

Efficiency examples 2

for lint i = 1 a0 <= Ny 44}
for (int j§ = 1; 3 <= N; J++) { N2

statementl;
}

Eoran o sl e g N24-4N
statement?;
statement3;
statement4;
statement5;

4N

* How many statements will execute if N = 10? If N = 10007

p—
Sum this up for me

e Let's write a method to calculate the sum from 1 to some n

publre s gt aesvin v sIamlvtamE e

PR ST ma g } 1
Y A A A A M M M A T A I I D
ST ke N N ~+ 2

¥
return sum; } 1

* Gauss also has a way of solving this

puglrcystabienintsama St

{
return n * (n + 1) / 2; }1 }1

e Which one is more efficient?

Visualizing Difference

Comparing sum1 and sum2

125

-4

w

Number of steps

"

- suml

- s5um2

10

I

o - —
~ Algorithm growth rates (13.2)

* We measure runtime in proportion to the input data size, N.

growth rate: Change in runtime as N changes.

e Say an algorithm runs 0.4N3 + 25N2 + 8N + 17
statements.

Consider the runtime when N is extremely large .

We ignore constants like 25 because they are tiny next to N.
The highest-order term (N3) dominates the overall runtime.

We say that this algorithm runs "on the order of" N3.
or O(N3) for short ("Big-Oh of N cubed")

11

J
/ m
Complexity classes

e complexity class: A category of algorithm efficiency
based on the algorithm's relationship to the input size N.

Class Big-Oh If you double N, ... Example
constant O(1) unchanged 10ms
logarithmic O(logz N) increases slightly 175ms
linear O(N) doubles 3.2 sec
log-linear O(N log2 N) | slightly more than doubles 6 sec
quadratic O(N2) quadruples 1 min 42 sec
cubic O(N3) multiplies by 8 55 min
exponential O(2N) multiplies drastically 5 * 106! years

Complexity classes

- 0)

- Ollogn)
- O(n)

- Onlogn)
- O(n*2)
- O(2%n)

= O(n')

Cperatons

btio.//recursive-desian com/bloa/2010/12/07/comp-sci-101-big-g-notatign/ - post about a Google interview 13

http://recursive-design.com/blog/2010/12/07/comp-sci-101-big-o-notation/

Sequential search

* sequential search: Locates a target value in an array /
list by examining each element from start to finish. Used in
Trdex@fR:

How many elements will it need to examine?

Example: Searching the array below for the value 42:

index| 0111234567 |8|9]10|11]|12|13|14|15| 16
value | -4 2|7]10[15|20(22(25|30{36|42|50|56|68|85]|92|103

h

The array is sorted. Could we take advantage of this?

21

/

I

—_—_——//

Binary Search (15, 1)

* binary search: Locates a target value in a sorted array or
list by successively eliminating half of the array from

consideration.

How many elements will it need to examine?

Example: Searching the array below for the value 42:

index| 0 (1|2 (3|14(5|6|7|8|9(10|11(12(13|14(15]| 16
value |41 2|7 |10]15(20(22(25|30|36(42|50(56|68|85(92|103
min max

22

Sequential search

* What is its complexity class?

publircviintE s ndesdOr Cimt i walye) of

SR ee o ubavBY e A e R

1f (elementDatal[i] == value) {

} re iR e N
}
return -1; e G

}

index| 0111234567 |8|9]10|11|12|13|14|15| 16

value|-4| 2| 7 [10(15/20|22]|25|30|36|42|50|56|68|85|92|103

* On average, "only" N/2 elements are visited
1/2 is a constant that can be ignored

I

Binary search

* binary search successively eliminates half of the
elements.

Algorithm: Examine the middle element of the array.
- If it is too big, eliminate the right half of the array and repeat.

- If it is too small, eliminate the left half of the array and repeat.
- Else it is the value we're searching for, so stop.

Which indexes does the algorithm examine to find value 427
What is the runtime complexity class of binary search?

index| 0 (12|34 |5|6|7]|8|9|10(11]12|13|14|15]| 16

value|-4| 2| 7 [10(15/20|22]|25|30|36|42|50|56|68|85|92|103

min mid max

26

J
/ o [
Binary search runtime

* For an array of size N, it eliminates 2 until 1 element

remains.
N, N/2, N/4, N/S, ..., 4, 2, 1

How many divisions does it take?

e Think of it from the other direction:
How many times do I have to multiply by 2 to reach N?

.2 4.8 . NM4- N2 N
Call this number of muiltiplications "x".

2x= N
X =logz2 N

e Binary search is in the logarithmic complexity class.

27

/

I

Collection efficiency

o Efficiency of our Java's ArrayList and LinkedList methods:

Method ArrayList | LinkedList

add O(1)* O(1)**

add (index, value) O(N) O(N)
indexOf O(N) O(N)

get O(1) O(N)
remove O(N) O(N)

set O(1) O(N)

size O(1) O(1)***

* Most of the time!
** Assuming we have a reference to the back of the list

*** Assuming we have a size field

28

