Building Java Programs

Chapter 14
stacks and queues

reading: 14.1-14.4







S — ==

fg

bstract data types (ADTs)

* abstract data type (ADT): A specification of a collection
of data and the operations that can be performed on it.

Describes what a collection does, not how it does it

* We don't know exactly how a the collections is
implemented, and we don't need to.

We just need to understand the idea of the collection and what
operations it can perform



" Stacks and queues

* Some collections are constrained so clients can only use

optimized operations

stack: retrieves elements in reverse order as added
queue: retrieves elements in same order as added

push

top

bottom

stack

\ / pop, peek

remove, peek

«—

front

back

1

queue

add



push

pPop

bottom



Stacks

o stack: A collection based on the principle of adding
elements and retrieving them in the opposite order
Last-In, First-Out ("LIFO")
Elements are stored in order of insertion.

- We do not think of them as having indexes.

Client can only add/remove/examine
the last element added (the "top").

push pop, peek
» basic stack operations:
push: Add an element to the top. top| 3
pop: Remove the top element.
. 2
peek: Examine the top element.
bottom| 1

stack



f

Stacks in computer science

* Programming languages and compilers:
method calls are placed onto a stack (call=push, return=pop)
compilers use stacks to evaluate expressions

return var

] : : method3 local vars

* Matching up related pairs of things: porameer
find out whether a string is a palindrome method2 | Lelvrs

i I 1F 1 return var

examine a file to see if its braces { } match method | leees

convert "infix" expressions to pre/postfix

* Sophisticated algorithms:
searching through a maze with "backtracking”
many programs use an "undo stack" of previous operations



Class stack
Stack<E> () |constructs a new stack with elements of type E
push (value) | places given value on top of stack
pop () removes top value from stack and returns it;
throws EmptyStackException if stack is empty
peek () returns top value from stack without removing it;
throws EmptyStackException if stack is empty
size () returns number of elements in stack
isEmpty () returns true if stack has no elements

stack<BString> s —new Stackastrianga ()

Sl
sy pushtMo s
sopshyt e ™)

// bOttOm [uan, "b", "C"] top

Svstenm out iprintinticipop ) ff el

Stack has other methods that are off-limits (not efficient)



Collections of primitives

* The type parameter specified when creating a collection
(e.g. ArrayList, Stack, Queue) must be an object type

// illegal -- int cannot be a type parameter

Stack<int> s = new Stack<int>();
ArrayList<int> list = new Arraylist<int>();

* Primitive types need to be "wrapped" in objects

// creates a stack of ints
Stack<Integer> s = new Stack<Integer> () ;



Stack limitations/idioms

T
* You cannot loop over a stack in the usual way.

Stack<Integer> s = new Stack<Integer>{();

» Instead, you pull elements out of the stack one at a time.
common idiom: Pop each element until the stack is empty.

// process (and destroy) an entire stack
while (!s.isEmpty()) {

do something with s.pop();
}

10



/

What happened to my stack?

e Suppose we're asked to write a method max that accepts a

Stack of integers and returns the largest integer in the
stack:

// Precondition: !'s.isEmpty()
public static void max (Stack<Integer> s) {

int maxValue ='s.popl);
while (!s.isEmpty()) {
It next = s popit);
maxValue = Math.max (maxValue, next);

}

return maxValue;

The algorithm is correct, but what is wrong with the code?

11



fg

ﬁat happened to my stack?

* The code destroys the stack in figuring out its answer.
To fix this, you must save and restore the stack's contents:

publaecistatic vord max(Stackalinteger>ig)
Stack<Integer> backup = new Stack<Integer>() ;
int maxValue = s.pop();
backup.push (maxValue) ;

while (!s.isEmpty()) {
ImE e = e ()
backup.push (next) ;
maxValue = Math.max (maxValue, next);

}

while (!backup.isEmpty ()
s .push (backup.pop())
}

return maxValue;

) { // restore

12



Queue Exampl

remove

13



Queues

*» queue: Retrieves elements in the order they were added.

First-In, First-Out ("FIFO")
Elements are stored in order of
insertion but don't have indexes.

Client can only add to the end of the

queue, and can only examine/remove

the front of the queue.

front

remove, peek

“«—

1

e basic queue operations:

queue

add (enqueue): Add an element to the back.
remove (dequeue): Remove the front element.

peek: Examine the front element.

14



f

ueues in computer science

e Operating systems:
queue of print jobs to send to the printer
queue of programs / processes to be run
queue of network data packets to send

* Programming:
modeling a line of customers or clients
storing a queue of computations to be performed in order

e Real world examples:
people on an escalator or waiting in a line
cars at a gas station (or on an assembly line)

15



ff

(Plzogramming with Queues

add (value) | places given value at back of queue
remove () removes value from front of queue and returns it;
throws a NoSuchElementException if queue is empty
peek () returns front value from queue without removing it;
returns null if queue is empty
size () returns number of elements in queue
isEmpty () |returns true if queue has no elements
Queue<Integer> g = new @edLis Integer>() ;
g.add (42) ;
givaddil=5)7 // T >\\
choedd il // front [42, -3, 17] back

System.out.println(g.remove()):; // 42

IMPORTANT: When constructing a queue you must use a
new LinkedList object instead of a new Queue object.

- This is because Queue is an interface

16



Queue idioms

* As with stacks, must pull contents out of queue to view
them.

// process (and destroy) an entire queue
whidew thaiasEmpey )

do something with g.remove () ;
}

another idiom: Examining each element exactly once.
BhgHp s Y e s e e
Fori(int 1= 0 1 0 siver iR Ly

do something with g.remove () ;

(including possibly re-adding it to the queue)
}

- Why do we need the size variable?

A 74



f

* We often mix stacks and queues to achieve certain effects.
Example: Reverse the order of the elements of a queue.

Queue<Integer> q = new LinkedList<Integer>() ;
eaaldd (n

elnad ey

g.add(3); L1, 2, 3]

Stack<Integer> s = new Stack<Integer>() ;

while (TageisEmpe vty )i | // Q -> S
s.push (g.remove () ) ;

}

e e e // S > Q

q.add(s.pop());
}

Sustenw ot print i (el Vi e e s

18



Exercises

*» Write a method repeat that accepts a queue of integers as

a parameter and replaces every element of the queue with
two copies of that element.

Tront il s 3k el s ek

becomes
Fronka il e e e Rl bhia ok

* Write a method mirror that accepts a queue of strings as a

parameter and appends the queue's contents to itself in
reverse order.

Eronyihaseaiasiveiivla g enlc
becomes
Froneivias v lbyiner e iiigaiaiia g ole

19



S —————— _

f

ote about Stacks & Queues

* You are only allowed to use the methods for Stacks and
Queues we introduced here.

* On the exams, we generally forbid the peek method since it
makes the problems too easy (will be written on problem).

20



