Building Java Programs

Chapter 10 & 11 Lists and Sets

reading: 10.1, 11.2

Week 2: 9/30-10/4

- Monday
 - Client of Collections: Lists and Sets
- Tuesday
 - Style
- Wednesday
 - Stacks and Queues
- Thursday
 - Stacks and Queues
- Friday
 - Classes, Objects, and References

Collections

- collection: an object that stores data; a.k.a. "data structure"
 - the objects stored are called elements
 - some collections maintain an ordering; some allow duplicates
 - typical operations: add, remove, clear, contains (search), size
 - examples found in the Java class libraries: (covered in this course!)
 - ArrayList, LinkedList, HashMap, TreeSet, PriorityQueue
 - all collections are in the java.util package import java.util.*;

Lists

- list: a collection of elements with 0-based indexes
 - elements can be added to the front, back, or elsewhere
 - a list has a size (number of elements that have been added)

List methods

```
List<String> list = new ArrayList<String>();  // empty
List<Integer> list2 = new LinkedList<Integer>();
list.add("hello");
list.add("goodbye");
System.out.println(list); // ["hello", "goodbye"]
```

add (value)	adds the given value to the list	
add (index, value)	Adds the given value at the given index to the list	
contains (value)	returns true if the given value is found in this list	
indexOf(value)	returns the index of the given value in the list (-1 if not found)	
remove(value)	removes the given value from the list	
size()	returns the number of elements in list	
isEmpty()	returns true if the list's size is 0	
toString()	returns a string such as "[3, 42, -7, 15]"	

Wrapper classes

Primitive Type	Wrapper Type
int	Integer
double	Double
char	Character
boolean	Boolean

- A wrapper is an object whose sole purpose is to hold a primitive value.
- Once you construct the list, use it with primitives as normal:

```
List<Double> grades = new ArrayList<Double>();
grades.add(3.2);
grades.add(2.7);
...
double myGrade = grades.get(0);
```

Exercise

- Write a program that counts the number of unique words in a large text file (say, Moby Dick or the King James Bible).
 - Store the words in a collection and report the # of unique words.
 - Once you've created this collection, allow the user to search it to see whether various words appear in the text file.
- What collection is appropriate for this problem?

The "for each" loop (7.1)

```
for (type name : collection) {
    statements;
}
```

 Provides a clean syntax for looping over the elements of a List, Set, array, or other collection

```
List<Double> grades = new ArrayList<Double>();
...

for (double grade : grades) {
    System.out.println("Student's grade: " + grade);
}
```

More readable and can be more efficient

Sets (11.2)

- set: A collection of unique values (no duplicates allowed) that can perform the following operations efficiently:
 - add, remove, search (contains)
 - We don't think of a set as having indexes; we just add things to the set in general and don't worry about order

Set implementation

- in Java, sets are represented by Set type in java.util
- Set is implemented by HashSet and TreeSet classes
 - TreeSet: implemented using a "binary search tree";
 pretty fast: O(log N) for all operations
 elements are stored in sorted order
 - HashSet: implemented using a "hash table" array;
 very fast: O(1) for all operations
 elements are stored in unpredictable order

Note: This O(something) notation won't be covered until next week. It's okay not to know what it means yet.

Set methods

add (value)	adds the given value to the set	
contains (value)	returns true if the given value is found in this set	
remove(value)	removes the given value from the set	
clear()	removes all elements of the set	
size()	returns the number of elements in list	
isEmpty()	returns true if the set's size is 0	
toString()	returns a string such as "[3, 42, -7, 15]"	