
Building Java Programs

Chapter 15
testing ArrayIntList;

pre/post conditions and exceptions

reading: 4.4 15.1 - 15.3

2

pollev.com/cse143

 Warm Up: What is the output of this code?
ArrayIntList list1 = new ArrayIntList();
ArrayIntList list2 = new ArrayIntList();
list1.add(1);
list2.add(2);
list1.add(3);
list2.add(4);
System.out.println(list1);
System.out.println(list2);

3

Recall: classes and objects
• class: A program entity that represents:

 A complete program or module, or
 A template for a type of objects.

 (ArrayList is a class that defines a type.)

• object: An entity that combines state and behavior.

– object-oriented programming (OOP): Programs that
perform their behavior as interactions between objects.

– abstraction: Separation between concepts and details.
Objects provide abstraction in programming.

4

Searching methods
 Implement the following methods:

 indexOf – returns first index of element, or -1 if not found
 contains - returns true if the list contains the given int value

 Why do we need isEmpty and contains when we already
have indexOf and size ?
 Adds convenience to the client of our class:

// less elegant // more elegant

if (myList.size() == 0) { if (myList.isEmpty()) {

if (myList.indexOf(42) >= 0) { if (myList.contains(42)) {

5

Class constants
public static final type name = value;

 class constant: a global, unchangeable value in a class
 used to store and give names to important values used in code
 documents an important value; easier to find and change

later

 classes will often store constants related to that type
 Math.PI
 Integer.MAX_VALUE, Integer.MIN_VALUE
 Color.GREEN

// default array length for new ArrayIntLists
public static final int DEFAULT_CAPACITY = 10;

6

Preconditions
 precondition: Something your method assumes is true

at the start of its execution.
 Often documented as a comment on the method's header:

// Returns the element at the given index.
// Precondition: 0 <= index < size
public int get(int index) {

return elementData[index];
}

 Stating a precondition doesn't really "solve" the problem, but
it at least documents our decision and warns the client what
not to do.

 What if we want to actually enforce the precondition?

7

Bad precondition test
 What is wrong with the following way to handle violations?

// Returns the element at the given index.
// Precondition: 0 <= index < size
public int get(int index) {

if (index < 0 || index >= size) {
System.out.println("Bad index! " + index);
return -1;

}
return elementData[index];

}

 returning -1 no better than returning 0 (could be legal value)
 println is not a very strong deterrent to the client (esp. GUI)

8

Throwing exceptions (4.4)
throw new ExceptionType();
throw new ExceptionType("message");

 Generates an exception that will crash the program,
unless it has code to handle ("catch") the exception.

 Common exception types:
 ArithmeticException, ArrayIndexOutOfBoundsException,
FileNotFoundException, IllegalArgumentException,
IllegalStateException, IOException,
NoSuchElementException, NullPointerException,
RuntimeException, UnsupportedOperationException

 Why would anyone ever want a program to crash?

9

Exception example
public int get(int index) {

if (index < 0 || index >= size) {
throw new ArrayIndexOutOfBoundsException(index);

}
return elementData[index];

}

 Exercise: Modify the rest of ArrayIntList to state
preconditions and throw exceptions as appropriate.

10

Private helper methods
private type name(type name, ..., type name) {

statement(s);
}

 a private method can be seen/called only by its own class
 your object can call the method on itself, but clients cannot

call it
 useful for "helper" methods that clients shouldn't directly

touch

private void checkIndex(int index, int min, int max) {

if (index < min || index > max) {

throw new IndexOutOfBoundsException(index);

}

}

11

Postconditions
 postcondition: Something your method promises will be

true at the end of its execution.
 Often documented as a comment on the method's header:

// Precondition : size() < capacity
// Postcondition: value is added at the end of the list
public void add(int value) {

elementData[size] = value;
size++;

}

 If your method states a postcondition, clients should be able to
rely on that statement being true after they call the method.

12

Not enough space
 What to do if client needs to add more than 10 elements?

 list.add(15); // add an 11th element

 Possible solution: Allow the client to construct the list with a
larger initial capacity.

index 0 1 2 3 4 5 6 7 8 9
value 3 8 9 7 5 12 4 8 1 6

size 10

13

Multiple constructors
 Our list class has the following constructor:

public ArrayIntList() {
elementData = new int[10];
size = 0;

}

 Let's add a new constructor that takes a capacity
parameter:

public ArrayIntList(int capacity) {
elementData = new int[capacity];
size = 0;

}

 The constructors are very similar. Can we avoid redundancy?

14

this keyword
 this : A reference to the implicit parameter

(the object on which a method/constructor is called)

 Syntax:

 To refer to a field: this.field

 To call a method: this.method(parameters);

 To call a constructor this(parameters);
from another constructor:

15

Revised constructors
// Constructs a list with the given capacity.
public ArrayIntList(int capacity) {

elementData = new int[capacity];
size = 0;

}

// Constructs a list with a default capacity of 10.
public ArrayIntList() {

this(10); // calls (int) constructor
}

16

ArrayList of primitives?
 The type you specify when creating an ArrayList must

be an object type; it cannot be a primitive type.

// illegal -- int cannot be a type parameter
ArrayList<int> list = new ArrayList<int>();

 But we can still use ArrayList with primitive types by
using special classes called wrapper classes in their place.

// creates a list of ints
ArrayList<Integer> list = new ArrayList<Integer>();

17

Wrapper classes

 A wrapper is an object whose sole purpose is to hold a primitive value.

 Once you construct the list, use it with primitives as normal:

ArrayList<Double> grades = new ArrayList<Double>();
grades.add(3.2);
grades.add(2.7);
...
double myGrade = grades.get(0);

Primitive
Type

Wrapper
Type

int Integer

double Double

char Character

boolean Boolean

18

Thinking about testing
 If we wrote ArrayIntList and want to give it to others, we

must make sure it works adequately well first.

 Some programs are written specifically to test other
programs.
 We could write a client program to test our list.
 Its main method could construct several lists, add elements to

them, call the various other methods, etc.
 We could run it and look at the output to see if it is correct.

 Sometimes called a unit test because it checks a small unit of
software (one class).
 black box: Tests written without looking at the code being tested.
 white box: Tests written after looking at the code being tested.

19

Tips for testing
 You cannot test every possible input, parameter value, etc.

 Think of a limited set of tests likely to expose bugs.

 Think about boundary cases
 Positive; zero; negative numbers
 Right at the edge of an array or collection's size

 Think about empty cases and error cases
 0, -1, null; an empty list or array

 test behavior in combination
 Maybe add usually works, but fails after you call remove
 Make multiple calls; maybe size fails the second time only

20

Example ArrayIntList test
public static void main(String[] args) {

int[] a1 = {5, 2, 7, 8, 4};
int[] a2 = {2, 7, 42, 8};
int[] a3 = {7, 42, 42};
helper(a1, a2);
helper(a2, a3);
helper(new int[] {1, 2, 3, 4, 5}, new int[] {2, 3, 42, 4});

}

public static void helper(int[] elements, int[] expected) {
ArrayIntList list = new ArrayIntList(elements);
for (int i = 0; i < elements.length; i++) {

list.add(elements[i]);
}
list.remove(0);
list.remove(list.size() - 1);
list.add(2, 42);
for (int i = 0; i < expected.length; i++) {

if (list.get(i) != expected[i]) {
System.out.println("fail; expect " + Arrays.toString(expected)

+ ", actual " + list);
}

}
}

