
CSE 143: Computer Programming II Autumn 2019
HW5: GrammarSolver (due Thursday, October 31 2019 11:30pm)
This assignment focuses on recursive programming, regular expressions, and grammars. It will
also give you an opportunity to work with maps. Turn in the following files using the link on the
course website:

• GrammarSolver.java – A class that allows for the generation of grammars based on given rules.

You will need the support files GrammarMain.java, sentence.txt, and sentence2.txt; place these in
the same folder as your program or project. The code you submit must work properly with the unmodified
versions of the provided files.

Languages, Grammars, and BNF
The main goal of this assignment is to generate random valid sentences given a set of rules. To explain
how to do this, we first need to define a few ideas.

Formal Languages
A formal language is a set of words and symbols along with a set of rules defining how those symbols
may be used together. For example, “A boy threw the ball.” is a valid sentence, but “A threw boy ball
the” makes no sense, because the words were put together in an invalid way.
In this assignment, we will use a special syntax called Backus-Naur Form (BNF) to describe what con-
stitutes a valid sentence.

Grammars
A grammar is a way of describing the syntax and symbols of a formal language. Grammars have two
types of “symbols” (e.g., words, phrases, sentences): terminals and non-terminals. A terminal symbol is
a fundamental word of the language. For example, in English, any single word would be a terminal. When
constructing sentences, we want to put words together in grammatically correct ways using sentences,
noun phrases, objects, etc. You can think of non-terminals as specific combinations of choices of terminals.
For example, consider the following simple language:

• Terminals: the, a, boy, girl, runs, walks

• Non-terminals:
– A sentence is “article and object and

verb”
– An article is “the or a”.
– An object is “boy or girl”.
– A verb is “runs or walks”.

sentence

verb

runs

object

girl

article

the

This language has the following sentences:
“the boy runs” “the boy walks” “a boy runs” “a boy walks”
“the girl runs” “the girl walks” “a girl runs” “a girl walks”

1

Backus-Naur Form (BNF)
BNF is a specific format for specifying grammars. Each line of a BNF looks like the following:

nonterminal ::= rule | rule | ... | rule

Each “rule” is some sequence of terminals or non-terminals separated by whitespace. The ‘|’ character
indicates a choice in possible rules. The grammar specified above would look like the following in BNF:

sentence::=article object verb
article::=the | a
object::=boy | girl
verb::=runs | walks

Notice that sentence has multiple non-terminals put together in one choice, whereas the others each
consist of one of multiple choices.
We guarantee the following formatting rules of BNFs you will be given:

• Each line will contain exactly one occurrence of ::= which is the separator between the name of
the non-terminal and the choices.

• A pipe (|) will separate each choice for the non-terminal. If there is only one rule (like with
sentence above), there will be no pipe on that line.

• Whitespace separates tokens but doesn’t haven any special meaning. There will be at least one
whitespace character between each part of a single rule. Extra whitespace should be removed.

• Case matters when comparing symbols. For example, <S> would not be considered the same
non-terminal as <s>.

• If a symbol on the right never appears on the left of a ::=, it should be considered a terminal.

• You may assume the text before the “::=” is not empty, does not contain a pipe character, and it
does not contain any whitespace.

• You may assume the text after the “::=” will be nonempty. There might be duplicate rules because
including more than one copy of a rule would make it more likely to be selected.

GrammarSolver
In this assignment you will complete a program that reads an input file with a grammar in Backus-Naur
Form and allows the user to randomly generate elements of the grammar. You will use recursion to
implement the core of your algorithm.

You are given a client program GrammarMain.java that does the file processing and user interaction.
You are to write a class called GrammarSolver that manipulates a grammar. GrammarMain reads a BNF
grammar input text file and passes its entire contents to you as a list of strings. You must break each
string from the list into symbols and rules so that it can output random elements of the grammar.

GrammarSolver should have the following constructor:

public GrammarSolver(List<String> rules)

This constructor should initialize a new grammar over the given BNF grammar rules where each rule
corresponds to one line of text. You should use regular expressions (see below) to break apart the
rules and store them into a Map so that you can look up parts of the grammar efficiently later.

You should not modify the list passed in. You should throw an IllegalArgumentException if the
list is empty or if there are two or more entries in the grammar for the same non-terminal.

2

GrammarSolver should also implement the following methods:

public boolean grammarContains(String symbol)

This method should return true if the given symbol is a non-terminal in the grammar and false
otherwise.

For example, for the grammar above, grammarContains("sentence") would return true and
grammarContains("foo") or grammarContains("boy") (“boy” is a terminal in the language)
would return false.

public String getSymbols()

This method should return a string representation of the various nonterminal symbols from the
grammar as a sorted, comma-separated list enclosed in square brackets

For example, calling getSymbols() for the previous grammar would give: “[article, object,
sentence, verb]”.

public String[] generate(String symbol, int times)

This method should generate times random occurrences of the given symbol and return them as
a String[]. Each string generated should be compact in the sense that there should be
exactly one space between each terminal and there should be no leading or trailing spaces.

If times is negative, you should throw an IllegalArgumentException. If the String argument
passed is not a non-terminal in your grammar you should throw an IllegalArgumentException.

When generating a non-terminal symbol in your grammar, each of its rules should be applied with
equal probability. Use the Random class in java.util to help you make random choices between
rules.

Implementation Details
GrammarSolver Constructor
We want you to store the grammar in a particular way using a Map. The keys of your Map will be the
non-terminals and the values will be the rules for a specific non-terminal.
Note that you will want to store the keys in your map in a particular order (for your getSymbols()
method), and you will want to store your grammar rules for each non-terminal in a way that is convenient
for the operations needed in this assignment.

generate Algorithm
In the generate method, the main goal is to generate a random occurrence of a given non-terminal NT .
You should use the following recursive algorithm:

Choose a random expansion rule R for the non-terminal NT . For each of the symbols in the
rule R, generate a random occurrence of that symbol. Note that your base case will be when
the symbols in the rule you chose are not non-terminals. Meanwhile, you will want to recurse
for any non-terminals you need to generate.

It is perfectly okay to have a loop inside your recursion. In fact, your code will be better in this assignment
if you include one. The directory crawler program from lecture will serve as a good guide for how to write
this program. In that example, the hard part was writing code to traverse all of the different directories
and that’s where we used recursion. For your program, the hard part is following the grammar to generate
different parts of the grammar, so that is the place to use recursion.
You will also find that you will want to use a public/private pair for this recursive task.

3

Testing Your Solution
There is an Output Comparison Tool for this assignment but it is only so helpful since the output is
random. We are providing another tool that is linked on the section for this assignment to check the
output of your generate method to make sure it is producing valid output.

�

Remember to
remove any
debugging
code when you
submit.

You can test your whitespace of your generate by using some non-whitespace character (i.e. ~) instead
of spaces and inspecting the output visually.

Splitting Strings
In this assignment, it will be useful to know how to split strings apart in Java. In particular, you will need
to split the various options for rules on the | character, and then, you will need to split the pieces of a
rule apart by spaces.

To do this, you should use String’s split method which takes in a String delimiter (e.g. “what to split
by”) argument and returns your original large String as an array of smaller Strings.

The delimiter String passed to split is called a regular expression, which are strings that use a particular
syntax to indicate patterns of text. A regular expression is a String that “matches” certain sequences.
For instance, “abc” is a regular expression that matches “a followed by b followed by c”. The following
regular expressions will be useful to you for this assignment:

• Splitting Non-Terminals from Rules. Given a String, line, to split line based on where
::= occurs, you could use the regular expression “::=” (since you are looking for these literal
characters). For example:

1 String line = "example::=foo bar |baz";
2 String[] pieces = line.split("::="); // ["example", "foo bar |baz"]

• Splitting Different Rules. Given a String, rules, to split rules based on where the | character
is, it looks similar to the above, except, in regular expressions, | is a special character. So, we must
escape it (just like \n or \t). So, the regular expression is “\\|”. (Note that we need two slashes
because slashes themselves must be escaped in Strings.) For example:

1 String rules = "foo bar|baz |quux mumble";
2 String[] pieces = rules.split("\\|"); // ["foo bar", "baz ", "quux mumble"]

• Splitting Apart a Single Rule. Given a String, rule, to split rule based on whitespace, we
must look for “at least one whitespace”. We can use \\s to indicate “a single whitespace of any
kind: \t, space, etc. And by adding + afterwards, the regular expression is interpreted as “one or
more of whitespace”. For example:

1 String rule = "the quick brown fox";
2 String[] pieces = rule.split("\\s+"); // ["the", "quick", "brown", "fox"]

Removing Whitespace from the Beginning and the End of a String
One minor issue that comes up with splitting on whitespace as above is that if the String you are splitting
begins with a whitespace character, you will get an empty String at the front of the resulting array.
Given a String, str, we can create a new String that omits all leading and trailing whitespace removed:

1 String str = " lots of spaces \t";
2 String trimmedString = str.trim(); // "lots of spaces"

4

Full Example Walk-Through
Complex BNF (sentence.txt)
<sentence>::=<nounp> <verbp>
<nounp>::=<det> <adjs> <noun>|<propnoun>
<propnoun>::=John|Jane|Sally|Spot|Fred|Elmo
<adjs>::=<adj>|<adj> <adjs>
<adj>::=big|green|wonderful|faulty|subliminal|pretentious
<det>::=the|a
<noun>::=dog|cat|man|university|father|mother|child|television
<verbp>::=<transverb> <nounp>|<intransverb>
<transverb>::=hit|honored|kissed|helped
<intransverb>::=died|collapsed|laughed|wept

Example Random Sentence
<sentence>

<verbp>

<nounp>

<noun>

child

<adjs>

<adjs>

<adj>

wonderful

<adj>

green

<det>

the

<transverb>

honored

<nounp>

<propnoun>

Fred

Example Execution (user input underlined)
>> Welcome to the cse143 random sentence generator.
>>
>> What is the name of the grammar file? sentence.txt
>>
>> Available symbols are:
>> [<adj>, <adjs>, <det>, <intransverb>, <noun>, <nounp>, <propnoun>, <sentence>, <transverb>, <verbp>]
>> What do you want generated (return to quit)? <sentence>
>> How many do you want me to generate? 5
>> Sally hit Jane
>> Spot hit John
>> Jane died
>> the green mother wept
>> the subliminal green man laughed
>>
>> Available symbols are:
>> [<adj>, <adjs>, <det>, <intransverb>, <noun>, <nounp>, <propnoun>, <sentence>, <transverb>, <verbp>]
>> What do you want generated (return to quit)? <sentence>

More example program exectuions found at the end of the spec.

5

Development Strategy
The hardest method is generate, so write it last.
Remember that it is helpful to tackle difficult methods using “iterative development” where you solve
simple versions of the problem first. Random programs can be difficult to validate correctness, and the
generate method you will implement uses randomness to decide which rule for a given non-terminal to
use. To help you debug and validate your output, the Output Comparison Tool has an example that
does not randomly choose a rule, but instead always chooses the 0-th index rule. If you want to test
your generate method, you could implement this 0-th index choosing strategy at first so you can use the
Output Comparison Tool. It would be incorrect to turn in this solution as a final product, so make sure
you implement the random strategy before turning it in. There is also a grammar verifier tool on the
website that verifies your output follows the grammar rules (but it ignores whitespace).

If your recursive method has a bug, try putting a debug println that prints your parameter values to
see the calls being made.

Style Guidelines and Grading
Part of your grade will come from appropriately utilizing recursion to implement your algorithm as de-
scribed previously. We will also grade on the elegance of your recursive algorithm; don’t create special
cases in your recursive code if they are not necessary. Redundancy is another major grading focus; you
should avoid repeated logic as much as possible. Your class may have other methods besides those
specified, but any other methods you add should be private.

SortedMap
Because we want you to guarantee the keys of your map are sorted, we will ask you to use the
SortedMap<K, V> interface for this assignment instead of the Map<K, V> interface. The SortedMap
interface is essentially the same as the Map interface, except it requires the keys be sorted. This means
TreeMap is a valid SortedMap implementation, but HashMap is not. You can use all the same methods
on a SortedMap as you could on a Map.

Generic Structures
You should always use generic structures. If you make a mistake in specifying type parameters, the
Java compiler may warn you that you have “unchecked or unsafe operations” in your program. If you
use jGRASP, you may want to change your settings to see which line the warning refers to. Go to
Settings/Compiler Settings/Workspace/Flags/Args and then uncheck the box next to “Compile”
and type in: -Xlint:unchecked

Data Fields
Properly encapsulate your objects by making data your fields private. Avoid unnecessary fields; use
fields to store important data of your objects but not to store temporary values only used in one place.
Fields should always be initialized inside a constructor or method, never at declaration.

Java Style Guidelines
Appropriately use control structures like loops and if/else statements. Avoid redundancy using techniques
such as methods, loops, and factoring common code out of if/else statements. Properly use indentation,
good variable names, and types. Do not have any lines of code longer than 100 characters. You should
thoroughly document all methods of your class and include a general description of the class in the class
header. Please refer to the Style Guide, the General Style Deductions, and the Commenting Guide.

6

https://courses.cs.washington.edu/courses/cse143/19au/homework/cse143-style-guide2/javaguide.html
https://courses.cs.washington.edu/courses/cse143/19au/style.shtml
https://courses.cs.washington.edu/courses/cse143/19au/homework/commenting-guide.pdf

Sample Execution (user input underlined)
>> Welcome to the cse143 random sentence generator.
>>
>> What is the name of the grammar file? sentence.txt
>>
>> Available symbols to generate are:
>> [<adj>, <adjs>, <det>, <intransverb>, <noun>, <nounp>, <propnoun>, <sentence>, <transverb>, <verbp>]
>> What do you want generated (return to quit)? <det>
>> How many do you want me to generate? 5
>> the
>> a
>> a
>> the
>> a
>>
>> Available symbols to generate are:
>> [<adj>, <adjs>, <det>, <intransverb>, <noun>, <nounp>, <propnoun>, <sentence>, <transverb>, <verbp>]
>> What do you want generated (return to quit)? <nounp>
>> How many do you want me to generate? 5
>> Jane
>> the wonderful pretentious green big father
>> Fred
>> the wonderful cat
>> a subliminal pretentious dog
>>
>> Available symbols to generate are:
>> [<adj>, <adjs>, <det>, <intransverb>, <noun>, <nounp>, <propnoun>, <sentence>, <transverb>, <verbp>]
>> What do you want generated (return to quit)? <sentence>
>> How many do you want me to generate? 20
>> Jane kissed Spot
>> the wonderful wonderful pretentious television collapsed
>> Jane hit Fred
>> Jane helped a wonderful dog
>> Elmo helped the green wonderful man
>> a pretentious university helped Elmo
>> a wonderful green subliminal father hit Fred
>> Fred kissed Spot
>> Spot laughed
>> the green wonderful father collapsed
>> the big man helped John
>> a pretentious green faulty dog collapsed
>> Jane honored a green subliminal green child
>> Elmo hit Elmo
>> a green university died
>> the pretentious child honored a faulty wonderful subliminal television
>> Jane died
>> the faulty dog hit John
>> Elmo helped Fred
>> Elmo honored the pretentious big green father
>>
>> Available symbols to generate are:
>> [<adj>, <adjs>, <det>, <intransverb>, <noun>, <nounp>, <propnoun>, <sentence>, <transverb>, <verbp>]
>> What do you want generated (return to quit)?

7

Sample Execution (user input underlined)
>> Welcome to the cse143 random sentence generator.
>>
>> What is the name of the grammar file? sentence2.txt
>>
>> Available symbols to generate are:
>> [E, F1, F2, OP, T]
>> What do you want generated (return to quit)? T
>> How many do you want me to generate? 5
>> 42
>> - y
>> x
>> x
>> ((1))
>>
>> Available symbols to generate are:
>> [E, F1, F2, OP, T]
>> What do you want generated (return to quit)? E
>> How many do you want me to generate? 10
>> x - 1
>> 0
>> sin (1 + 92 + - 1 / 42)
>> max (y , 92)
>> 42 % 1
>> - 42
>> 92
>> 1
>> 92
>> 42 - sin (1)
>>
>> Available symbols to generate are:
>> [E, F1, F2, OP, T]
>> What do you want generated (return to quit)?

8

