

 CSE143 Final
 Autumn 2018

Name of Student: __

Section (e.g., AA):_______________________ Student Number: __________________

The exam is divided into eight questions with the following points:

 # Problem Area Points Score

 1 Binary Tree Traversal 6 _____

 2 Binary Search Tree 4 _____

 3 Inheritance/Polymorphism 10 _____

 4 Comparable 15 _____

 5 Collections 15 _____

 6 Binary Tree Programming 10 _____

 7 Binary Tree Programming 20 _____

 8 LinkedList Programming 20 _____

 Total 100 _____

This is a closed-book/closed-note exam. Space is provided for your answers.
There is a "cheat sheet" at the end that you can use as scratch paper. You are
not allowed to access any of your own papers during the exam.

The exam is not, in general, graded on style and you do not need to include
comments. For the Collections questions, however, you are expected to use generics
properly and to declare variables using interfaces when possible. You are not allowed
to use programming constructs like break, continue, or returning from a void method
on this exam. Do not use constructs from Java 8.

Do not abbreviate code, such as "ditto" marks or dot-dot-dot ... marks. For the
inheritance problem, you may abbreviate “compiler error” as CE and “runtime error” as RE.

You are NOT to use any electronic devices while taking the test, including
calculators. Anyone caught using an electronic device will receive a 10
point penalty.

Do not begin work on this exam until instructed to do so. Any student who
starts early or who continues to work after time is called will receive a 10
point penalty.

If you finish the exam early, please hand your exam to the instructor and exit
quietly through the front door.
	

1. Binary Tree Traversals, 6 points: Consider the following tree:

 +---+
 | 4 |
 +---+
 / \
 / \
 +---+ +---+
 | 1 | | 9 |
 +---+ +---+
 \ / \
 \ / \
 +---+ +---+ +---+
 | 0 | | 2 | | 8 |
 +---+ +---+ +---+
 / /
 / /
 +---+ +---+
 | 3 | | 7 |
 +---+ +---+

 Fill in each of the traversals below:

 Preorder traversal __

 Inorder traversal __

 Postorder traversal __

2. Binary Search Tree, 4 points: Draw a picture below of the binary search
 tree that would result from inserting the following words into an empty
 binary search tree in the following order:

 Hilda, David, Johanna, Frida, Woodman, Alfur, Twig

 Assume the search tree uses alphabetical ordering to compare words.

3. Inheritance/Polymorphism, 10 points: Assuming that the following classes have been
defined:

 public class Pupper extends Doggo {
 public void method2() {
 System.out.println("Pupper 2");
 }

 public void method3() {
 System.out.println("Pupper 3");
 }
 }

 public class Cat extends Pet {
 public void method2() {
 System.out.println("Cat 2");
 }

 public void method3() {
 System.out.println("Cat 3");
 }
 }

 public class Pet {
 public void method1() {
 System.out.println("Pet 1");
 method3();
 }

 public void method3() {
 System.out.println("Pet 3");
 }
 }

 public class Doggo extends Pet {
 public void method3() {
 System.out.println("Doggo 3");
 super.method3();
 }
 }

And assuming the following variables have been defined:

 Pet var1 = new Doggo();
 Pupper var2 = new Pupper();
 Pet var3 = new Cat();
 Pet var4 = new Pupper();
 Pet var5 = new Pet();
 Object var6 = new Doggo();

In the table below, indicate in the right-hand column the output produced by
the statement in the left-hand column. If the statement produces more than one
line of output, indicate the line breaks with slashes as in "a/b/c" to indicate
three lines of output with "a" followed by "b" followed by "c". If the
statement causes an error, fill in the right-hand column with either the phrase
"compiler error" or "runtime error" to indicate when the error would be
detected; you may use the abbreviations "CE" and "RE" respectively.

 Statement Output
 --

 var1.method1(); ____________________________

 var2.method1(); ____________________________

 var3.method1(); ____________________________

 var4.method1(); ____________________________

 var5.method1(); ____________________________

 var6.method1(); ____________________________

 var1.method2(); ____________________________

 var2.method2(); ____________________________

 var3.method2(); ____________________________

 var1.method3(); ____________________________

 var2.method3(); ____________________________

 var3.method3(); ____________________________

 ((Pupper) var6).method1(); ____________________________

 ((Doggo) var3).method2(); ____________________________

 ((Pupper) var4).method2(); ____________________________

 ((Pet) var3).method2(); ____________________________

 ((Cat) var3).method2(); ____________________________

 ((Pupper) var1).method1(); ____________________________

 ((Doggo) var4).method3(); ____________________________

 ((Pet) var6).method3(); ____________________________
	

4. Comparable, 15 points: Define a class PokemonTrainer that stores information about a
Pokemon trainer and how many battles they have won. Each PokemonTrainer object keeps
track of a trainer's name, number of badges, total battles played, and number of battles
won.

The class has the following public methods:

 PokemonTrainer(String name, int badges)
 constructs a PokemonTrainer object with the given
 name and number of badges. When a PokemonTrainer
 object is constructed, it has played zero battles.

 getBadges() returns the number of badges the trainer has earned

 getBattlePercent() returns a real number representing the exact percent
 of battles this trainer has won. If the trainer has
 won all of their battles, should return 100.0, if
 the trainer has won none of their battles, should

 return 0.0. If the trainer has not played any
 battles yet, should return 0.0

 battle(boolean won) records a battle for this trainer. Passed true if
 the trainer won the battle, false otherwise

 toString() returns a String with name, number of badges, and
 percent of wins (or "no battles" if none). The
 battle percentage should be truncated after the

 decimal, so if getBattlePercent() returned 73.835,
 then toString would report a battle percent of 73%

Below is example client code using PokemonTrainer objects:

 PokemonTrainer trainer1 = new PokemonTrainer("Sam", 1);
 PokemonTrainer trainer2 = new PokemonTrainer("Anika", 6);

 trainer2.getBadges(); // returns 6
 trainer1.battle(true); // records a battle win for trainer1
 trainer1.battle(false); // records a battle loss for trainer1
 trainer1.getBattlePercent(); // returns 50.0
 trainer2.getBattlePercent(); // returns 0.0
 trainer1.battle(false); // records a battle loss for trainer1
 trainer1.getBattlePercent(); // returns 33.3333333333333333
 trainer1.toString(); // returns "Sam has 1 badge(s) and a 33% win rate"
 trainer2.toString(); // returns "Anika has 6 badge(s) and no battles"

The PokemonTrainer class should be comparable to other PokemonTrainer objects and should
implement the Comparable interface. Trainers that have a higher battle percentage should
be considered "less" than other trainers so that they appear at the beginning of a sorted
list. You should use the complete value of the battle percentage rather than a truncated
value. Trainers that have the same battle percentage should be ordered by the number of
battles played, with trainers who have battled more often considered "less" than trainers
that have battled less frequently. If there is still a tie, the trainers should be sorted
alphabetically by name.

You can use the space on the next page to write your answer.

This page is left blank so you have extra space on #4

	

5. Collections Programming, 15 points: Write a method called numPlacesTraveled that takes
a List describing a trip someone took to some place and returns a map indicating the
number of unique places each person has visited. The input will be a list of strings in
the format "<name>:<location>". The map you are to return should map people’s names to
the number of unique locations they have traveled to.

For example, if a variable called trips contained the list

 ["Erik:Reno", "Porter:Mexico", "Cherie:Vancouver", "Erik:Mexico", "Erik:LasVegas",
 "Cherie:LosAngeles", "Porter:NewYork", "Cherie:Vancouver", "Yuma:LosAngeles",
 "Erik:Reno"]

In this example, we see that Erik has taken trips to Reno, Mexico, Las Vegas, and then
Reno again, while Yuma has only been to Los Angeles. Suppose the following call is made:

 numPlacesTraveled(trips)

Given this call, the following map would be returned

 {"Cherie"=2, "Yuma"=1, "Porter"=2, "Erik"=3}

Notice that the value for the key "Erik" is 3 because Erik has been to 3 unique places of
the ones he has traveled to. The value for the key "Yuma" is 1 because Yuma has only been
to one place.

The map you return should prioritize constant-time access for the values in the map. If
the given list is empty, your method should throw an IllegalArgumentException.

Your method should run faster than O(n^2) time where n is the number of elements in the
input list. Your method should not modify the provided list. To solve this problem, you
will need to create auxiliary data structures; you should think about what data
structures would be most appropriate for this problem.

You may assume that the list and none of the strings in the list are null. You may also
assume that the strings are in the proper format "<name>:<location>" with exactly one
instance of ":" in the string. You should treat the names and locations in a case-
sensitive manner and use the values in the strings as given without having to modify
them.

You can use space on the next page to write your answer.

	

This page is left blank so you have extra space on #5

	

6. Binary Tree Programming, 10 points: Write a method hasZeroPath that returns true if
there is a path from the root of the tree to a leaf consisting only of elements with zero
value. An empty tree is considered to have a 0-length path and should therefore return
true.

Examples

 t.overallRoot t.overallRoot t.overallRoot
 | | |
 0 0 0
 / \ / \ / \
 7 0 7 0 0 7
 / \ / \ / \ / \
 3 0 0 0 3 1 3 21

hasZeroPath() returns true hasZeroPath() returns false hasZeroPath() returns true

You are writing a public method for a binary tree class defined as follows:
 public class IntTreeNode {
 public int data; // data stored in this node
 public IntTreeNode left; // reference to left subtree
 public IntTreeNode right; // reference to right subtree

 <constructors>
 }

 public class IntTree {
 private IntTreeNode overallRoot;

 <methods>
 }

You are writing a method that will become part of the IntTree class. You may define
private helper methods to solve this problem, but otherwise you may not call any other
methods of the class. You may not construct any extra data structures to solve this
problem.

Space is provided on the next page.

This page is left blank so you have extra space on #6

	

7. Binary Tree Programming, 20 points: Write an IntTree method indicateMatching which
compares the nodes of this IntTree to the nodes of a second IntTree. For each node in the
trees, change this tree in the following way:

 * If a node exists in this tree but not the other tree, replace it with -1.
 * If a node exists in the other tree but not this tree, replace it with -2.
 * Otherwise, leave the node unchanged.

Here are two sample calls:

 Before call After t1.indicateMatching(t2)

 t1.overallRoot t2.overallRoot t1.overallRoot t2.overallRoot
 | | | |
 1 3 1 3
 \ \ \ \
 2 2 2 2
 \ \ \ \
 3 1 3 1

 Before call After t3.indicateMatching(t4)

 t3.overallRoot t4.overallRoot t3.overallRoot t4.overallRoot
 | | | |
 1 1 1 1
 / \ / \ / \ / \
 2 5 3 4 2 5 3 4
 \ \ / / \ / \ / \ / / \
 3 6 5 9 6 -2 -1 -2 6 5 9 6
 / \ / \ / / \ / \
 7 8 7 8 -2 -1 8 7 8

You are writing a public method for a binary tree class defined as follows:

 public class IntTreeNode {
 public int data; // data stored in this node
 public IntTreeNode left; // reference to left subtree
 public IntTreeNode right; // reference to right subtree

 public IntTreeNode(int data) { ... }
 public IntTreeNode(int data, IntTreeNode left, IntTreeNode right) { ... }
 }

 public class IntTree {
 private IntTreeNode overallRoot;

 <methods>
 }

You are writing a method that will become part of the IntTree class. You may define
private helper methods to solve this problem, but otherwise you may not call any other
methods of the class. You may not construct any extra data structures to solve this
problem. Your solution should run in O(n) time, where n is the number of nodes in the
trees and should create as few IntTreeNodes as possible. Your solution should not modify
the data of any existing nodes.

Space is provided on the next page.

This page is left blank so you have extra space on #7
	

8. LinkedList Programming, 20 points: Write a method of the LinkedIntList class called
mergeWith that takes a LinkedIntList as a parameter and that moves the values from the
second list into the first list so as to preserve sorted order assuming that the two
lists are in sorted (nondecreasing) order initially. The resulting list should contain
the values from both lists in sorted order and the list passed as a parameter should be
empty after the call. For example, if the variables list1 and list2 store the following:

 list1 = [-3, 0, 9, 12, 43, 54], list2 = [9, 9, 15, 98]

and you make the following call:

 list1.mergeWith(list2);

then the lists should store the following values after the call:

 list1 = [-3, 0, 9, 9, 9, 12, 15, 43, 54, 98], list2 = []

Notice that list2 is empty after the call and that the values that were in list2 have
been moved into list1 so as to preserve sorted order. If the call instead had been
list2.mergeWith(list1) then the result would be:

 list1 = [], list2 = [-3, 0, 9, 9, 9, 12, 15, 43, 54, 98]

Either list might be empty, as in:

 list1 = [5, 7, 7, 12, 15], list2 = []

in which case the call list1.mergeWith(list2) would leave the lists unchanged while
list2.mergeWith(list1) would leave you in this state:

 list1 = [], list2 = [5, 7, 7, 12, 15]

You are writing a public method for the LinkedIntList class defined as follows:

 public class ListNode {
 public int data; // data stored in this node
 public ListNode next; // link to next node in the list

 <constructors>
 }

 public class LinkedIntList {
 private ListNode front;

 <methods>
 }

Both lists are of type LinkedIntList. You may define private helper methods to solve this
problem, but otherwise you may not assume that any particular methods are available. You
are allowed to define your own variables of type ListNode, but you may not construct any
new nodes, and you may not use any auxiliary data structure to solve this problem (no
array, ArrayList, stack, queue, String, etc). You also may not change any data fields of
the nodes. You MUST solve this problem by rearranging the links of the lists. Your
solution must run in O(n) time where n is the length of the merged list. As in the
examples above, assume that both lists are in sorted order.

This page is left blank so you have extra space on #8

CSE143 Cheat Sheet

Linked Lists (16.2)
Below is an example of a method that could be added to
the LinkedIntList class to compute the sum of the list:

public int sum() {
 int sum = 0;
 ListNode current = front;
 while (current != null) {
 sum += current.data;
 current = current.next;
 }
 return sum;
}

Math Methods (3.2) mathematical operations

Math.abs(value) absolute value
Math.min(v1, v2) smaller of two values
Math.max(v1, v2) larger of two values
Math.round(value) nearest whole number
Math.pow(b, e) b to the e power
Math.signum(v) signum of v

Iterator<E> Methods (11.1) (An object that lets you examine the contents of any collection)

hasNext() returns true if there are more elements to be read from collection
next() reads and returns the next element from the collection
remove() removes the last element returned by next from the collection

List<E> Methods (10.1) (An ordered sequence of values)

add(value) appends value at end of list
add(index, value) inserts given value at given index, shifting subsequent values right
clear() removes all elements of the list
indexOf(value) returns first index where given value is found in list (-1 if not found)
get(index) returns the value at given index
remove(index) removes/returns value at given index, shifting subsequent values left
set(index, value) replaces value at given index with given value
size() returns the number of elements in list
isEmpty() returns true if the list’s size is 0
contains(value) returns true if the given value is found somewhere in this list
remove(value) finds and removes the given value from this list if it is present
iterator() returns an object used to examine the contents of the list

Set<E> Methods (11.2) (A fast-searchable set of unique values)

add(value) adds the given value to the set
contains(value) returns true if the given value is found in the set
remove(value) removes the given value from the set if it is present
clear() removes all elements of the set
size() returns the number of elements in the set
isEmpty() returns true if the set's size is 0
iterator() returns an object used to examine the contents of the set

Map<K, V> Methods (11.3) (A fast mapping between a set of keys and a set of values)

put(key, value) adds a mapping from the given key to the given value
get(key) returns the value mapped to the given key (null if none)
containsKey(key) returns true if the map contains a mapping for the given key
remove(key) removes any existing mapping for the given key
clear() removes all key/value pairs from the map
size() returns the number of key/value pairs in the map
isEmpty() returns true if the map's size is 0
keySet() returns a Set of all keys in the map
values() returns a Collection of all values in the map
putAll(map) adds all key/value pairs from the given map to this map

String Methods (3.3) (An object for storing a sequence of characters)

charAt(i) the character in this String at a given index
contains(str) true if this String contains the other's characters inside it
endsWith(str) true if this String ends with the other's characters
equals(str) true if this String is the same as str
equalsIgnoreCase(str) true if this String is the same as str, ignoring capitalization
indexOf(str) first index in this String where given String begins (-1 if not found)
lastIndexOf(str) last index in this String where given String begins (-1 if not found)
length() number of characters in this String
isEmpty() true if this String is the empty string
startsWith(str) true if this String begins with the other's characters
substring(i) characters in this String from index i (inclusive) to the end
substring(i, j) characters in this String from index i (inclusive) to j (exclusive)
toLowerCase(),toUpperCase() a new String with all lowercase or uppercase letters

Collections Implementations
List<E> ArrayList<E> and LinkedList<E>
Set<E> HashSet<E> and TreeSet<E> (values ordered)
Map<K, V> HashMap<K, V> and TreeMap<K, V> (keys ordered)

