
Building Java Programs
Binary Search Trees

reading: 17.3 – 17.4

2

Binary search trees
� binary search tree ("BST"): a binary tree where each

non-empty node R has the following properties:
� elements of R's left subtree contain data "less than" R's data,
� elements of R's right subtree contain data "greater than" R's,
� R's left and right subtrees are also binary search trees.

� BSTs store their elements in
sorted order, which is helpful
for searching/sorting tasks.

9160

8729

55

42-3

overall root

4

Searching a BST
� Describe an algorithm for searching a binary search tree.

� Try searching for the value 31, then 6.

� What is the maximum
number of nodes you
would need to examine
to perform any search?

12

18

7

4 15

overall root

-2 1613

35

31

22 58

19 8740

5

Exercise
� Convert the IntTree class into a SearchTree class.

� The elements of the tree will form a legal binary search tree.

� Write a contains method that takes advantage of the BST
structure.

� tree.contains(29) ® true
� tree.contains(55) ® true
� tree.contains(63) ® false

� tree.contains(35) ® false

9160

8729

55

42-3

overall root

6

Exercise solution
// Returns whether this BST contains the given integer.
public boolean contains(int value) {

return contains(overallRoot, value);
}

private boolean contains(IntTreeNode node, int value) {
if (node == null) {

return false; // base case: not found here
} else if (node.data == value) {

return true; // base case: found here
} else if (node.data > value) {

return contains(node.left, value);
} else { // root.data < value

return contains(node.right, value);
}

}

7

Adding to a BST
� Suppose we want to add new values to the BST below.

� Where should the value 14 be added?
� Where should 3 be added? 7?

� If the tree is empty, where
should a new value be added?

� What is the general algorithm?

1910

115

8

4

2 7

25

22

overall root

8

Adding exercise
� Draw what a binary search tree would look like if the

following values were added to an initially empty tree in
this order:

50
20
75
98
80
31
150
39
23
11
77

50

20 75

80

9811

39

31

15023

77

9

Exercise
� Add a method add to the SearchTree class that adds a

given integer value to the BST.
� Add the new value in the proper place to maintain BST

ordering.

� tree.add(49);

9160

8729

55

42-3

overall root

49

10

An incorrect solution
// Adds the given value to this BST in sorted order.
public void add(int value) {

add(overallRoot, value);
}
private void add(IntTreeNode node, int value) {

if (node == null) {
node = new IntTreeNode(value);

} else if (node.data > value) {
add(node.left, value);

} else if (node.data < value) {
add(node.right, value);

}
// else node.data == value, so
// it's a duplicate (don't add)

}

� Why doesn't this solution work?

9160

8729

55

42-3

overallRoot

The x = change(x)
pattern

read 17.3

12

A tangent: Change a point
� What is the state of the object referred to by p after this

code?

public static void main(String[] args) {
Point p = new Point(1, 2);
change(p);
System.out.println(p);

}

public static void change(Point thePoint) {
thePoint.x = 3;
thePoint.y = 4;

}

// answer: (3, 4)

2y1xp

13

Change point, version 2
� What is the state of the object referred to by p after this

code?

public static void main(String[] args) {
Point p = new Point(1, 2);
change(p);
System.out.println(p);

}

public static void change(Point thePoint) {
thePoint = new Point(3, 4);

}

// answer: (1, 2)

2y1xp

4y3x

14

Changing references
� If a method dereferences a variable (with .) and modifies

the object it refers to, that change will be seen by the
caller.
public static void change(Point thePoint) {

thePoint.x = 3; // affects p
thePoint.setY(4); // affects p

� If a method reassigns a variable to refer to a new object,
that change will not affect the variable passed in by the
caller.
public static void change(Point thePoint) {

thePoint = new Point(3, 4); // p unchanged
thePoint = null; // p unchanged

� What if we want to make the variable passed in become null?

15

Change point, version 3
� What is the state of the object referred to by p after this

code?

public static void main(String[] args) {
Point p = new Point(1, 2);
change(p);
System.out.println(p);

}

public static Point change(Point thePoint) {
thePoint = new Point(3, 4);
return thePoint;

}

// answer: (1, 2)

2y1xp

4y3x

16

Change point, version 4
� What is the state of the object referred to by p after this

code?

public static void main(String[] args) {
Point p = new Point(1, 2);
p = change(p);
System.out.println(p);

}

public static Point change(Point thePoint) {
thePoint = new Point(3, 4);
return thePoint;

}

// answer: (3, 4)

2y1xp

4y3x

17

x = change(x);
� If you want to write a method that can change the object

that a variable refers to, you must do three things:
1. pass in the original state of the object to the method
2. return the new (possibly changed) object from the method
3. re-assign the caller's variable to store the returned result

p = change(p); // in main

public static Point change(Point thePoint) {
thePoint = new Point(99, -1);
return thePoint;

� We call this general algorithmic pattern x = change(x);
� also seen with strings: s = s.toUpperCase();

18

The problem
� Much like with linked lists, if we just modify what a local

variable refers to, it won't change the collection.

private void add(IntTreeNode node, int value) {
if (node == null) {

node = new IntTreeNode(value);
}

� In the linked list case, how did we
actually modify the list?
� by changing the front
� by changing a node's next field 9160

8729

55

42-3

overallRoot

49node

19

Applying x = change(x)
� Methods that modify a tree should have the following

pattern:
� input (parameter): old state of the node
� output (return): new state of the node

� In order to actually change the tree, you must reassign:
node = change(node, parameters);
node.left = change(node.left, parameters);
node.right = change(node.right, parameters);
overallRoot = change(overallRoot, parameters);

your
method

node
before

node
after

parameter return

20

A correct solution
// Adds the given value to this BST in sorted order.
public void add(int value) {

overallRoot = add(overallRoot, value);
}

private IntTreeNode add(IntTreeNode node, int value) {
if (node == null) {

node = new IntTreeNode(value);
} else if (node.data > value) {

node.left = add(node.left, value);
} else if (node.data < value) {

node.right = add(node.right, value);
} // else a duplicate; do nothing

return node;
}

� What happens when node is a leaf?

9160

8729

55

42-3

overallRoot

