Exercise: Dice roll sum

- Write a method `diceSum` similar to `diceRoll`, but it also accepts a desired sum and prints only arrangements that add up to exactly that sum.

```java
// Example usage:
diceSum(2, 7);  // returns: [1, 6], [2, 5], [3, 4], [4, 3], [5, 2], [6, 1]
diceSum(3, 7);  // returns: [1, 1, 5], [1, 2, 4], [1, 3, 3], [1, 4, 2], [1, 5, 1], [2, 1, 4], [2, 2, 3], [2, 3, 2], [2, 4, 1], [3, 1, 3], [3, 2, 2], [3, 3, 1], [4, 1, 2], [4, 2, 1], [5, 1, 1]
```
Consider all paths?

<table>
<thead>
<tr>
<th>chosen</th>
<th>available</th>
<th>desired sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>3 dice</td>
<td>5</td>
</tr>
</tbody>
</table>

1. 2 dice
2. 2 dice
3. 2 dice
4. 2 dice
5. 2 dice
6. 2 dice

1, 1 1 die
1, 1, 1
1, 1, 1
1, 1, 2
1, 1, 3
1, 1, 4
1, 1, 5
1, 1, 6

1, 2 1 die
1, 2

1, 3 1 die
1, 3

1, 4 1 die
1, 4

1, 5 1 die
1, 5

1, 6 1 die
1, 6

1, 6, 1
1, 6, 2
Optimizations

• We need not visit every branch of the decision tree.
 • Some branches are clearly not going to lead to success.
 • We can preemptively stop, or prune, these branches.

• Inefficiencies in our dice sum algorithm:
 • Sometimes the current sum is already too high.
 • (Even rolling 1 for all remaining dice would exceed the sum.)
 • Sometimes the current sum is already too low.
 • (Even rolling 6 for all remaining dice would not reach the sum.)
 • When finished, the code must compute the sum every time.
 • (1+1+1 = ..., 1+1+2 = ..., 1+1+3 = ..., 1+1+4 = ..., ...)
New decision tree

<table>
<thead>
<tr>
<th>chosen</th>
<th>available</th>
<th>desired sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>3 dice</td>
<td>5</td>
</tr>
</tbody>
</table>

1 2 dice
2 2 dice
3 2 dice
4 2 dice
5 2 dice
6 2 dice

1, 1 1 die
1, 2 1 die
1, 3 1 die
1, 4 1 die
1, 5 1 die
1, 6 1 die

1, 1, 1
1, 1, 2
1, 1, 3
1, 1, 4
1, 1, 5
1, 1, 6

1, 6, 1
1, 6, 2

...
The "8 Queens" problem

- Consider the problem of trying to place 8 queens on a chess board such that no queen can attack another queen.

 - What are the "choices"?
 - How do we "make" or "un-make" a choice?
 - How do we know when to stop?
Naive algorithm

- for (each square on board):
 - Place a queen there.
 - Try to place the rest of the queens.
 - Un-place the queen.

- How large is the solution space for this algorithm?
 - $64 \times 63 \times 62 \times \ldots$
Better algorithm idea

- Observation: In a working solution, exactly 1 queen must appear in each row and in each column.
 - Redefine a "choice" to be valid placement of a queen in a particular column.
 - How large is the solution space now?
 - $8 \times 8 \times 8 \times \ldots$
Exercise

• Suppose we have a `Board` class with these methods:

<table>
<thead>
<tr>
<th>Method/Constructor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>public <code>Board(int size)</code></td>
<td>construct empty board</td>
</tr>
<tr>
<td>public boolean <code>safe(int row, int column)</code></td>
<td>true if queen can be safely placed here</td>
</tr>
<tr>
<td>public void <code>place(int row, int column)</code></td>
<td>place queen here</td>
</tr>
<tr>
<td>public void <code>remove(int row, int column)</code></td>
<td>remove queen from here</td>
</tr>
<tr>
<td>public void <code>print()</code></td>
<td>displays the board</td>
</tr>
</tbody>
</table>

• Write a method `solve` that accepts a `Board` as a parameter and tries to place 8 queens on it safely.
 • Your method should find all solutions.