
2

Exercise
 Write a program that counts the number of unique words in

a large text file (say, Moby Dick or the King James Bible).

 Store the words in a collection and report the # of unique
words.

 Once you've created this collection, allow the user to search it
to see whether various words appear in the text file.

 What collection is appropriate for this problem?

3

Sets (11.2)
 set: A collection of unique values (no duplicates allowed)

that can perform the following operations efficiently:

 add, remove, search (contains)

 We don't think of a set as having indexes; we just
add things to the set in general and don't worry about order

set.contains("to") true

set

"the"
"of"

"from"

"to"

"she"
"you"

"him""why"

"in"

"down"

"by"

"if"

set.contains("be") false

4

Set methods
In Java, Set is an interface that allows you to call the

following methods

add(value) adds the given value to the set

contains(value) returns true if the given value is found in this set

remove(value) removes the given value from the set

clear() removes all elements of the set

size() returns the number of elements in list

isEmpty() returns true if the set's size is 0

toString() returns a string such as "[3, 42, -7, 15]"

5

Set implementation

 in Java, sets are represented by Set type in java.util

 Set is implemented by HashSet and TreeSet classes

 HashSet: implemented using a "hash table" array;

very fast: O(1) for all operations
elements are stored in unpredictable order

 TreeSet: implemented using a "binary search tree";

pretty fast: O(log N) for all operations
elements are stored in sorted order

Set<Integer> numbers = new TreeSet<Integer>();

Set<String> words = new HashSet<String>();

6

The "for each" loop (7.1)
for (type name : collection) {

statements;
}

 Provides a clean syntax for looping over the elements of a
Set, List, array, or other collection

Set<Double> grades = new HashSet<Double>();
...

for (double grade : grades) {

System.out.println("Student's grade: " + grade);

}

 needed because sets have no indexes; can't get element i

8

Maps (11.3)
 map: Holds a set of key-value pairs, where each key is

unique
a.k.a. "dictionary", "associative array", "hash"

map.get("the")

56

set

key value

"the" 56

key value

"why" 14

key value

"you" 22

key value

"me" 22

key value

"in" 37

key value

"at" 43

11

Map implementation

 in Java, maps are represented by Map type in java.util

 Map is implemented by the HashMap and TreeMap classes

 HashMap: implemented using an array called a "hash table";

extremely fast: O(1) ; keys are stored in unpredictable order

 TreeMap: implemented as a linked "binary tree" structure;

very fast: O(log N) ; keys are stored in sorted order

 LinkedHashMap: O(1) ; keys are stored in order of insertion

 Maps require 2 type params: one for keys, one for values.

// maps from String keys to Integer values

Map<String, Integer> votes = new HashMap<String, Integer>();

// maps from Integer keys to String values

Map<Integer, String> words = new TreeMap<Integer, String>();

12

Map methods
put(key, value) adds a mapping from the given key to the given value;

if the key already exists, replaces its value with the given one

get(key) returns the value mapped to the given key (null if not found)

containsKey(key) returns true if the map contains a mapping for the given key

remove(key) removes any existing mapping for the given key

clear() removes all key/value pairs from the map

size() returns the number of key/value pairs in the map

isEmpty() returns true if the map's size is 0

toString() returns a string such as "{a=90, d=60, c=70}"

keySet() returns a set of all keys in the map

values() returns a collection of all values in the map

putAll(map) adds all key/value pairs from the given map to this map

equals(map) returns true if given map has the same mappings as this one

15

16

Languages and grammars
 (formal) language: A set of words or symbols.

 grammar: A description of a language that describes
which sequences of symbols are allowed in that language.

 describes language syntax (rules) but not semantics
(meaning)

 can be used to generate strings from a language, or to
determine whether a given string belongs to a given language

17

Backus-Naur (BNF)
 Backus-Naur Form (BNF): A syntax for describing

language grammars in terms of transformation rules, of the
form:

<symbol> ::= <expression> | <expression> ... | <expression>

 terminal: A fundamental symbol of the language.

 non-terminal: A high-level symbol describing language
syntax, which can be transformed into other non-terminal or
terminal symbol(s) based on the rules of the grammar.

 developed by two Turing-award-winning computer scientists in
1960 to describe their new ALGOL programming language

23

Sentence generation
<s>

<np> <vp>

<pn>

Fred

<tv> <np>

honored

<dp> <adjp> <n>

the

<adjp><adj>

childgreen

<adj>

wonderful

