
Building Java Programs

Chapter 12

recursive programming

reading: 12.2 - 12.4

2

Recursion and cases
 Every recursive algorithm involves at least 2 cases:

 base case: simple problem that can be solved directly.

 recursive case: more complex occurrence of the problem
that cannot be directly answered, but can instead be described
in terms of smaller occurrences of the same problem.

 Some recursive algorithms have more than one base or
recursive case, but all have at least one of each.

 A crucial part of recursive programming is identifying these
cases.

3

Recursion Challenges
 Forgetting a base case

 Infinite recursion resulting in StackOverflowError

 Working away from the base case

 The recursive case must make progress towards the base case

 Infinite recursion resulting in StackOverflowError

 Running out of memory

 Even when making progress to the base case, some inputs
may require too many recursive calls: StackOverflowError

 Recomputing the same subproblem over and over again

 Refining the algorithm could save significant time

13

14

Exercise
 Write a method print accepts a File parameter and prints

information about that file.

 If the File object represents a normal file, just print its name.

 If the File object represents a directory, print its name and

information about every file/directory inside it, indented.

cse143

handouts

syllabus.doc

lecture_schedule.xls

homework

1-tiles

TileMain.java

TileManager.java

index.html

style.css

 recursive data: A directory can contain other directories.

15

File objects

 A File object (from the java.io package) represents

a file or directory on the disk.

Constructor/method Description

File(String) creates File object representing file with given name

canRead() returns whether file is able to be read

delete() removes file from disk

exists() whether this file exists on disk

getName() returns file's name

isDirectory() returns whether this object represents a directory

length() returns number of bytes in file

listFiles() returns a File[] representing files in this directory

renameTo(File) changes name of file

16

Public/private pairs
 We cannot vary the indentation without an extra

parameter:

public static void crawl(File f, String indent) {

 Often the parameters we need for our recursion do not
match those the client will want to pass.

In these cases, we instead write a pair of methods:

1) a public, non-recursive one with parameters the client wants

2) a private, recursive one with the parameters we really need

17

Exercise solution 2
// Prints information about this file,

// and (if it is a directory) any files inside it.

public static void print(File f) {

print(f, ""); // call private recursive helper

}

// Recursive helper to implement crawl/indent
behavior.

private static void print(File f, String indent) {

System.out.println(indent + f.getName());

if (f.isDirectory()) {

// recursive case; print contained files/dirs

File[] subFiles = f.listFiles();

for (int i = 0; i < subFiles.length; i++) {

print(subFiles[i], indent + " ");

}

}

}

18

Recursive Data
 A file is one of

 A simple file

 A directory containing files

 Directories can be nested to an arbitrary depth

 Iterative code to crawl a directory structure requires data
structures

 In recursive solution, we use the call stack

