Sum this up for me

- Let’s write a method to calculate the sum from 1 to some \(n \)

```java
public static int sum1(int n) {
    int sum = 0;
    for (int i = 1; i <= n; i++) {
        sum += i;
    }
    return sum;
}
```

- Gauss also has a way of solving this

```java
public static int sum2(int n) {
    return n * (n + 1) / 2;
}
```

- Which one is more efficient?
Runtime Efficiency (13.2)

- **efficiency**: measure of computing resources used by code.
 - can be relative to speed (time), memory (space), etc.
 - most commonly refers to run time
- We want to be able to compare different algorithms to see which is more efficient
Efficiency Try 1

- **Let’s time the methods!**

<table>
<thead>
<tr>
<th>n</th>
<th>sum1 took</th>
<th>sum2 took</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0ms</td>
<td>0ms</td>
</tr>
<tr>
<td>5</td>
<td>0ms</td>
<td>0ms</td>
</tr>
<tr>
<td>10</td>
<td>0ms</td>
<td>0ms</td>
</tr>
<tr>
<td>100</td>
<td>1ms</td>
<td>0ms</td>
</tr>
<tr>
<td>1,000</td>
<td>0ms</td>
<td>0ms</td>
</tr>
<tr>
<td>10,000,000</td>
<td>18ms</td>
<td>0ms</td>
</tr>
<tr>
<td>100,000,000</td>
<td>1147ms</td>
<td>0ms</td>
</tr>
<tr>
<td>2,147,483,647</td>
<td>1870ms</td>
<td>0ms</td>
</tr>
</tbody>
</table>

- **Downsides**
 - Different computers give different run times
 - The same computer gives different results!!! D:<
Efficiency – Try 2

• Let’s count number of “steps” our algorithm takes to run

• Assume the following:
 • Any single Java statement takes same amount of time to run.
 • `int x = 5;`
 • `boolean b = (5 + 1 * 2) < 15 + 3;`
 • `System.out.println("Hello");`

• A loop's runtime, if the loop repeats N times, is N times the runtime of the statements in its body.

• A method call's runtime is measured by the total runtime of the statements inside the method's body.
Efficiency examples

\[
\begin{align*}
\text{statement1;} \\
\text{statement2;} \\
\text{statement3;} \\
\end{align*}
\]
\[
\begin{align*}
\text{for (int } i = 1; i \leq N; i++)
\quad & \text{\{} \\
\quad & \text{statement4;} \\
\quad & \text{\}} \\
\end{align*}
\]
\[
\begin{align*}
\text{for (int } i = 1; i \leq N; i++)
\quad & \text{\{} \\
\quad & \text{statement5;} \\
\quad & \text{statement6;} \\
\quad & \text{statement7;} \\
\quad & \text{\}} \\
\end{align*}
\]
for (int i = 1; i <= N; i++) {
 for (int j = 1; j <= N; j++) {
 statement1;
 }
}

for (int i = 1; i <= N; i++) {
 statement2;
 statement3;
 statement4;
 statement5;
}

- How many statements will execute if N = 10? If N = 1000?
Sum this up for me

- Let’s write a method to calculate the sum from 1 to some n
  ```java
  public static int sum1(int n) {
      int sum = 0;
      for (int i = 1; i <= n; i++) {
          sum += i;
      }
      return sum;
  }
  ```

- Gauss also has a way of solving this
  ```java
  public static int sum2(int n) {
      return n * (n + 1) / 2;
  }
  ```

- Which one is more efficient?
Visualizing Difference
Algorithm growth rates (13.2)

- We measure runtime in proportion to the input data size, N.
 - **growth rate**: Change in runtime as N changes.

- Say an algorithm runs $0.4N^3 + 25N^2 + 8N + 17$ statements.
 - Consider the runtime when N is extremely large.
 - We ignore constants like 25 because they are tiny next to N.
 - The highest-order term (N^3) dominates the overall runtime.

- We say that this algorithm runs "on the order of" N^3.
- or $O(N^3)$ for short ("Big-Oh of N cubed")
Complexity classes

- **complexity class**: A category of algorithm efficiency based on the algorithm's relationship to the input size N.

<table>
<thead>
<tr>
<th>Class</th>
<th>Big-Oh</th>
<th>If you double N, ...</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant</td>
<td>$O(1)$</td>
<td>unchanged</td>
<td>10ms</td>
</tr>
<tr>
<td>logarithmic</td>
<td>$O(\log_2 N)$</td>
<td>increases slightly</td>
<td>175ms</td>
</tr>
<tr>
<td>linear</td>
<td>$O(N)$</td>
<td>doubles</td>
<td>3.2 sec</td>
</tr>
<tr>
<td>log-linear</td>
<td>$O(N \log_2 N)$</td>
<td>slightly more than doubles</td>
<td>6 sec</td>
</tr>
<tr>
<td>quadratic</td>
<td>$O(N^2)$</td>
<td>quadruples</td>
<td>1 min 42 sec</td>
</tr>
<tr>
<td>cubic</td>
<td>$O(N^3)$</td>
<td>multiplies by 8</td>
<td>55 min</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>exponential</td>
<td>$O(2^N)$</td>
<td>multiplies drastically</td>
<td>5×10^{61} years</td>
</tr>
</tbody>
</table>
Complexity classes

Sequential search

- **sequential search**: Locates a target value in an array / list by examining each element from start to finish. Used in `indexOf`.

- How many elements will it need to examine?

- Example: Searching the array below for the value **42**:

<table>
<thead>
<tr>
<th>index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>-4</td>
<td>2</td>
<td>7</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>22</td>
<td>25</td>
<td>30</td>
<td>36</td>
<td>42</td>
<td>50</td>
<td>56</td>
<td>68</td>
<td>85</td>
<td>92</td>
<td>103</td>
</tr>
</tbody>
</table>

- The array is sorted. Could we take advantage of this?
Binary search (13.1)

- **binary search**: Locates a target value in a *sorted* array or list by successively eliminating half of the array from consideration.

 - How many elements will it need to examine?

 - Example: Searching the array below for the value 42:

<table>
<thead>
<tr>
<th>index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>-4</td>
<td>2</td>
<td>7</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>22</td>
<td>25</td>
<td>30</td>
<td>36</td>
<td>42</td>
<td>50</td>
<td>56</td>
<td>68</td>
<td>85</td>
<td>92</td>
<td>103</td>
</tr>
</tbody>
</table>

Here, the value 42 is located at index 10.
Sequential search

- What is its complexity class?

```java
public int indexOf(int value) {
    for (int i = 0; i < size; i++) {
        if (elementData[i] == value) {
            return i;
        }
    }
    return -1;  // not found
}
```

- On average, "only" N/2 elements are visited
 - 1/2 is a constant that can be ignored
• **binary search** successively eliminates half of the elements.

 • **Algorithm:** Examine the middle element of the array.
 • If it is too big, eliminate the right half of the array and repeat.
 • If it is too small, eliminate the left half of the array and repeat.
 • Else it is the value we're searching for, so stop.

 • Which indexes does the algorithm examine to find value 42?
 • What is the runtime complexity class of binary search?

<table>
<thead>
<tr>
<th>index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>-4</td>
<td>2</td>
<td>7</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>22</td>
<td>25</td>
<td>30</td>
<td>36</td>
<td>42</td>
<td>50</td>
<td>56</td>
<td>68</td>
<td>85</td>
<td>92</td>
<td>103</td>
</tr>
</tbody>
</table>

\[min \quad mid \quad max \]
Binary search runtime

- For an array of size N, it eliminates $\frac{1}{2}$ until 1 element remains.
 $N, \frac{N}{2}, \frac{N}{4}, \frac{N}{8}, \ldots, 4, 2, 1$
 - How many divisions does it take?

- Think of it from the other direction:
 - How many times do I have to multiply by 2 to reach N?
 $1, 2, 4, 8, \ldots, \frac{N}{4}, \frac{N}{2}, N$
 - Call this number of multiplications "x".

 $2^x = N$
 $x = \log_2 N$

- Binary search is in the **logarithmic** complexity class.
Collection efficiency

- Efficiency of our Java's `ArrayList` and `LinkedList` methods:

<table>
<thead>
<tr>
<th>Method</th>
<th>ArrayList</th>
<th>LinkedList</th>
</tr>
</thead>
<tbody>
<tr>
<td>add</td>
<td>O(1)*</td>
<td>O(1)**</td>
</tr>
<tr>
<td>add(index, value)</td>
<td>O(N)</td>
<td>O(N)</td>
</tr>
<tr>
<td>indexOf</td>
<td>O(N)</td>
<td>O(N)</td>
</tr>
<tr>
<td>get</td>
<td>O(1)</td>
<td>O(N)</td>
</tr>
<tr>
<td>remove</td>
<td>O(N)</td>
<td>O(N)</td>
</tr>
<tr>
<td>set</td>
<td>O(1)</td>
<td>O(N)</td>
</tr>
<tr>
<td>size</td>
<td>O(1)</td>
<td>O(1)**</td>
</tr>
</tbody>
</table>

* Most of the time!
** Assuming we have a reference to the back of the list
*** Assuming we have a size field