
Building Java Programs

Complex Linked List Code
reading: 16.2 – 16.3

2

3

� Write a constructor for LinkedIntList that accepts an int
n parameter and makes a list of the number from 0 to n
� new LinkedIntList(3) :

data next
1

LinkedIntList(int n)

front = data next
3

data next
0

data next
2

4

addSorted
� Write a method addSorted that accepts an int as a

parameter and adds it to a sorted list in sorted order.

� Before addSorted(17) :

� After addSorted(17) :

front = data next
-4

data next
8

data next
22

element 0 element 1 element 2

front = data next
-4

data next
17

data next
22

element 0 element 2 element 3

data next
8

element 1

5

The common case
� Adding to the middle of a list:

addSorted(17)

� Which references must be changed?
� What sort of loop do we need?
� When should the loop stop?

front = data next
-4

data next
8

data next
22

element 0 element 1 element 2

6

First attempt
� An incorrect loop:

ListNode current = front;
while (current.data < value) {

current = current.next;
}

� What is wrong with this code?
� The loop stops too late to affect the list in the right way.

front = data next
-4

data next
8

data next
22

element 0 element 1 element 2

current

7

changing a list
� There are only two ways to change a linked list:

� Change the value of front (modify the front of the list)
� Change the value of <node>.next (modify middle or end of list

to point somewhere else)

� Implications:
� To add in the middle, need a reference to the previous node
� Front is often a special case

8

Key idea: peeking ahead
� Corrected version of the loop:

ListNode current = front;
while (current.next.data < value) {

current = current.next;
}

� This time the loop stops in the right place.

front = data next
-4

data next
8

data next
22

element 0 element 1 element 2

current

9

Another case to handle
� Adding to the end of a list:

addSorted(42)

Exception in thread "main": java.lang.NullPointerException

� Why does our code crash?
� What can we change to fix this case?

front = data next
-4

data next
8

data next
22

element 0 element 1 element 2

10

Multiple loop tests
� A correction to our loop:

ListNode current = front;
while (current.next != null &&

current.next.data < value) {
current = current.next;

}

� We must check for a next of null before we check its .data.

front = data next
-4

data next
8

data next
22

element 0 element 1 element 2

current

11

Third case to handle
� Adding to the front of a list:

addSorted(-10)

� What will our code do in this case?
� What can we change to fix it?

front = data next
-4

data next
8

data next
22

element 0 element 1 element 2

12

Handling the front
� Another correction to our code:

if (value <= front.data) {
// insert at front of list
front = new ListNode(value, front);

} else {
// insert in middle of list
ListNode current = front;
while (current.next != null &&

current.next.data < value) {
current = current.next;

}
}

� Does our code now handle every possible case?

13

Fourth case to handle
� Adding to (the front of) an empty list:

addSorted(42)

� What will our code do in this case?
� What can we change to fix it?

front =

14

Final version of code
// Adds given value to list in sorted order.
// Precondition: Existing elements are sorted
public void addSorted(int value) {

if (front == null || value <= front.data) {
// insert at front of list
front = new ListNode(value, front);

} else {
// insert in middle of list
ListNode current = front;
while (current.next != null &&

current.next.data < value) {
current = current.next;

}
}

}

15

Common cases
� middle: "typical" case in the middle of an existing list

� back: special case at the back of an existing list

� front: special case at the front of an existing list

� empty: special case of an empty list

16

17

Other list features
� Add the following methods to the LinkedIntList:

� size

� isEmpty

� clear

� toString

� indexOf

� contains

� Add a size field to the list to return its size more
efficiently.

� Add preconditions and exception tests to appropriate
methods.

