Recursion

A good boy.

Dapper Frog!

Hunter w/ a Husky

My parents bought my dog a hoodie

Please give me good grades on my midterm.
Exercise: Dice roll sum

- Write a method `diceSum` similar to `diceRoll`, but it also accepts a desired sum and prints only arrangements that add up to exactly that sum.

```java
diceSum(2, 7);  // diceSum(3, 7);

[1, 6]
[2, 5]
[3, 4]
[4, 3]
[5, 2]
[6, 1]
[1, 1, 5]
[1, 2, 4]
[1, 3, 3]
[1, 4, 2]
[1, 5, 1]
[2, 1, 4]
[2, 2, 3]
[2, 3, 2]
[2, 4, 1]
[3, 1, 3]
[3, 2, 2]
[3, 3, 1]
[4, 1, 2]
[4, 2, 1]
[5, 1, 1]
```
Consider all paths?

<table>
<thead>
<tr>
<th>chosen</th>
<th>available</th>
<th>desired sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>3 dice</td>
<td>5</td>
</tr>
</tbody>
</table>

...
Optimizations

- We need not visit every branch of the decision tree.
 - Some branches are clearly not going to lead to success.
 - We can preemptively stop, or prune, these branches.

- Inefficiencies in our dice sum algorithm:
 - Sometimes the current sum is already too high.
 - (Even rolling 1 for all remaining dice would exceed the sum.)
 - Sometimes the current sum is already too low.
 - (Even rolling 6 for all remaining dice would not reach the sum.)
 - When finished, the code must compute the sum every time.
 - (1+1+1 = ..., 1+1+2 = ..., 1+1+3 = ..., 1+1+4 = ..., ...)
New decision tree

<table>
<thead>
<tr>
<th>chosen</th>
<th>available</th>
<th>desired sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>3 dice</td>
<td>5</td>
</tr>
</tbody>
</table>

![Decision Tree Diagram]

1. **2 dice**
 - 1, 1
 - 1, 2
 - 1, 3
 - 1, 4
 - 1, 5
 - 1, 6

2. **1 die**
 - 1, 1
 - 1, 2
 - 1, 3
 - 1, 4
 - 1, 5
 - 1, 6

3. **Result**
 - 1, 1, 1
 - 1, 1, 2
 - 1, 1, 3
 - 1, 1, 4
 - 1, 1, 5
 - 1, 1, 6
 - 1, 6, 1
 - 1, 6, 2

...
The "8 Queens" problem

- Consider the problem of trying to place 8 queens on a chess board such that no queen can attack another queen.

- What are the "choices"?

- How do we "make" or "un-make" a choice?

- How do we know when to stop?
Naive algorithm

- for (each square on board):
 - Place a queen there.
 - Try to place the rest of the queens.
 - Un-place the queen.

- How large is the solution space for this algorithm?
 - $64 \times 63 \times 62 \times \ldots$
Better algorithm idea

- Observation: In a working solution, exactly 1 queen must appear in each row and in each column.

- Redefine a "choice" to be valid placement of a queen in a particular column.

- How large is the solution space now?
 - $8 \times 8 \times 8 \times ...$
Recall: Backtracking

A general pseudo-code algorithm for backtracking problems:

Explore(\texttt{choices}):
\begin{itemize}
\item if there are no more \texttt{choices} to make: stop.
\item else, for each available choice \texttt{C}:
 \begin{itemize}
 \item Choose \texttt{C}.
 \item Explore the remaining \texttt{choices}.
 \item Un-choose \texttt{C}, if necessary. (backtrack!)
 \end{itemize}
\end{itemize}
Exercise

- Suppose we have a `Board` class with these methods:

<table>
<thead>
<tr>
<th>Method/Constructor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>public Board(int size)</code></td>
<td>construct empty board</td>
</tr>
<tr>
<td><code>public boolean isSafe(int row, int column)</code></td>
<td>true if queen can be safely placed here</td>
</tr>
<tr>
<td><code>public void place(int row, int column)</code></td>
<td>place queen here</td>
</tr>
<tr>
<td><code>public void remove(int row, int column)</code></td>
<td>remove queen from here</td>
</tr>
<tr>
<td><code>public String toString()</code></td>
<td>text display of board</td>
</tr>
</tbody>
</table>

- Write a method `solveQueens` that accepts a `Board` as a parameter and tries to place 8 queens on it safely.
 - Your method should stop exploring if it finds a solution.