
Building Java Programs

Chapter 9
Inheritance and Polymorphism

reading: 9.1 - 9.2

2

Before class starts

 Interactive Activities
 Go to pollev.com/cse143

on your phone
 Type in your UW email
 Don’t create account /

type in password
 Click link for single sign-on
 Sign in using your UW

credentials
 Answer the question!

3

“I feel comfortable asking
questions in lecture.”

“In general, I am attentive with
what’s going on during lecture.”

“Being given time to talk to my peers and TAs in lecture helps clarify
concepts I might have been confused abotu.”

4

Asking Questions

 Asking questions is crucial to your learning
 Goal: Make a classroom environment that

welcomes (and encourages) asking questions

 Sometimes it can be a bit hard to ask questions
in a 500 person lecture

 Some alternatives
 Index cards (once a week)
 While TAs are walking around
 Have a TA ask a question for you

 pollev.com/cse143questions

5

Recall: Inheritance
 inheritance: Forming new classes based on existing ones.

 a way to share/reuse code between two or more classes

 superclass: Parent class being extended.
 subclass: Child class that inherits behavior from superclass.

 gets a copy of every field and method from superclass

 is-a relationship: Each object of the subclass also "is a(n)"
object of the superclass and can be treated as one.

Software Eng.
Green Form

Employee
Yellow Form

Engineer
Yellow Form

Lawyer
Yellow Form

Sales Rep.
Purple Form

6

Recall: Inheritance

public class A {

public void m1() {

S.o.pln(“A1”);

}

public void m2() {

S.o.pln(“A2”);

}

}

public class B extends A {

public void m2() {

super.method1();

S.o.pln(“B2”);

}

}

A a = new A();

B b = new B();

b.m1();

a.m2();

b.m2();

m1 m2

A

B

7

public class A {

public void m1() {

S.o.pln(“A1”);

}

public void m2() {

S.o.pln(“A2”);

}

public void m3() {

S.o.pln(“A3”);

}

}

public class B extends A {

public void m2() {

S.o.pln(“B2”);

}

}

C c = new C();

c.m3();

What is the output?
 A1 / C3

 B1 / C3

 C1 / C3

 C3

 Some kind of error

public class C extends B {
public void m1() {

S.o.pln(“C1”);
}

public void m3() {
super.m1();
S.o.pln(“C3”);

}
}

8

Why cover this again?
 New Topics

 Polymorphism when calling other methods
 Investigating Java’s type system

 What happens when you using casting with objects?
 What is and isn’t possible for the compiler to check?

 Motivation: We’ve been hand-waving what it means to say
List<Integer> list = new ArrayList<Integer>();

list.add(1);

 Why allow different types on the left side vs. right side?
PromiseType variable = new ActualType();

 PromiseType can be a superclass that ActualType extends
or an interface that ActualType implements
 Restricts usage of the instance of ActualType to only
PromiseType methods. Why is this useful?

9

Example: Music Players

10

MusicPlayer p = new Zune();

((iPhone) p2).record();

What does this line do?
 Call record on Zune
 Call record on MusicPlayer
 Call record on iPhone
 Compiler Error
 Runtime Error

11

public class MusicPlayer {

public void m1() {

S.o.pln(“MusicPlayer1”);

}

}

public class TapeDeck

extends MusicPlayer {

public void m3() {

S.o.pln(“TapeDeck3”);

}

}

public class IPod

extends MusicPlayer {

public void m2() {

S.o.pln(“IPod2”);

m1();

}

}

public class IPhone

extends IPod {

public void m1() {

S.o.pln(“IPhone1”);

super.m1();

}

public void m3() {

S.o.pln(“IPhone3”);

}

}

m1 m2 m3

MusicPlayer

TapeDeck

IPod

IPhone

12

MusicPlayer var1 = new TapeDeck();

MusicPlayer var2 = new IPod();

MusicPlayer var3 = new IPhone();

IPod var4 = new IPhone();

Object var5 = new IPod();

Object var6 = new MusicPlayer();

var1.m1();

MusicPlayer1

var3.m1();

IPhone1 / MusicPlayer1

var4.m2();

IPod2 / IPhone1 / MusicPlayer1

var3.m2();

Compiler Error (CE)

var5.m1();

Compiler Error (CE)

m1 m2 m3

MusicPlayer MP1 ∕ ∕
TapeDeck MP1 ∕ TD3

IPod MP1 IPod2
m1() ∕

IPhone
IPhone1

MP1
IPod2
m1() IPhone3

13

MusicPlayer var1 = new TapeDeck();

MusicPlayer var2 = new IPod();

MusicPlayer var3 = new IPhone();

IPod var4 = new IPhone();

Object var5 = new IPod();

Object var6 = new MusicPlayer();

((TapeDeck) var1).m2();

Compiler Error (CE)

((IPod) var3).m2();

IPod2 / IPhone1 / MusicPlayer1

((IPhone) var2).m1();

Runtime Error (RE)

((TapeDeck) var3).m2();

Compiler Error (CE)

m1 m2 m3

MusicPlayer MP1 ∕ ∕
TapeDeck MP1 ∕ TD3

IPod MP1 IPod2
m1() ∕

IPhone
IPhone1

MP1
IPod2
m1() IPhone3

14

General Rule
PromiseType var = new ActualType();

var.method() or ((CastType) var).method();

Compile Time
if (involves casting) {

check if CastType has method, if not fail with CE

} else {

check if PromiseType has method, if not fail with CE

}

RunTime (if compiles)
if (involves casting) {

check if ActualType can actually be cast to CastType,

if not fail with RE

}

call method on ActualType

