
Building Java Programs

Chapter 12
recursive programming

reading: 12.2 - 12.4

2

3

Recursion and cases
 Every recursive algorithm involves at least 2 cases:

 base case: simple problem that can be solved directly.

 recursive case: more complex occurrence of the problem
that cannot be directly answered, but can instead be described
in terms of smaller occurrences of the same problem.

 Some recursive algorithms have more than one base or
recursive case, but all have at least one of each.

 A crucial part of recursive programming is identifying these
cases.

4

Exercise
 Write a recursive method pow accepts an integer base and

exponent and returns the base raised to that exponent.
 Example: pow(3, 4) returns 81

 Solve the problem recursively and without using loops.

5

An optimization
 Notice the following mathematical property:

312 = 531441 = 96

= (32)6

531441 = (92)3

= ((32)2)3

 When does this "trick" work?
 How can we incorporate this optimization into our pow

method?
 What is the benefit of this trick if the method already works?

6

Exercise
 Write a recursive method printBinary that accepts an

integer and prints that number's representation in binary
(base 2).

 Example: printBinary(7) prints 111
 Example: printBinary(12) prints 1100
 Example: printBinary(42) prints 101010

 Write the method recursively and without using any loops.

place 10 1 32 16 8 4 2 1

value 4 2 1 0 1 0 1 0

7

Repeat Digits
 How did we break the number apart?

public static int repeatDigits(int n) {
if (n < 10) {

return (10 * n) + n;
} else {

int a = repeatDigits(n / 10);
int b = repeatDigits(n % 10);
return (100 * a) + b;

}
}

8

Case analysis
 Recursion is about solving a small piece of a large problem.

 What is 69743 in binary?
 Do we know anything about its representation in binary?

 Case analysis:
 What is/are easy numbers to print in binary?
 Can we express a larger number in terms of a smaller number(s)?

9

printBinary solution
// Prints the given integer's binary representation.
// Precondition: n >= 0
public static void printBinary(int n) {

if (n < 2) {
// base case; same as base 10
System.out.println(n);

} else {
// recursive case; break number apart
printBinary(n / 2);
printBinary(n % 2);

}
}

 Can we eliminate the precondition and deal with
negatives?

10

Exercise
 Write a recursive method isPalindrome accepts a String

and returns true if it reads the same forwards as
backwards.

 isPalindrome("madam") true
 isPalindrome("racecar") true
 isPalindrome("step on no pets") true
 isPalindrome("able was I ere I saw elba") true
 isPalindrome("Java") false
 isPalindrome("rotater") false
 isPalindrome("byebye") false
 isPalindrome("notion") false

11

Exercise solution
// Returns true if the given string reads the same
// forwards as backwards.
// Trivially true for empty or 1-letter strings.
public static boolean isPalindrome(String s) {

if (s.length() < 2) {
return true; // base case

} else {
char first = s.charAt(0);
char last = s.charAt(s.length() - 1);
if (first != last) {

return false;
} // recursive case
String middle = s.substring(1, s.length() -

1);
return isPalindrome(middle);

}
}

12

Exercise solution 2
// Returns true if the given string reads the same
// forwards as backwards.
// Trivially true for empty or 1-letter strings.
public static boolean isPalindrome(String s) {

if (s.length() < 2) {
return true; // base case

} else {
return s.charAt(0) == s.charAt(s.length() - 1)

&& isPalindrome(s.substring(1, s.length() -
1));

}
}

13

14

Exercise
 Write a method crawl accepts a File parameter and prints

information about that file.
 If the File object represents a normal file, just print its name.
 If the File object represents a directory, print its name and

information about every file/directory inside it, indented.

cse143
handouts

syllabus.doc
lecture_schedule.xls

homework
1-tiles

TileMain.java
TileManager.java
index.html
style.css

 recursive data: A directory can contain other directories.

15

Recursive Data
 A file is one of

 A simple file
 A directory containing files

 Directories can be nested to an arbitrary depth

16

File objects
 A File object (from the java.io package) represents

a file or directory on the disk.

Constructor/method Description

File(String) creates File object representing file with given name

canRead() returns whether file is able to be read

delete() removes file from disk

exists() whether this file exists on disk

getName() returns file's name

isDirectory() returns whether this object represents a directory

length() returns number of bytes in file

listFiles() returns a File[] representing files in this directory

renameTo(File) changes name of file

17

Public/private pairs
 We cannot vary the indentation without an extra

parameter:

public static void crawl(File f, String indent) {

 Often the parameters we need for our recursion do not
match those the client will want to pass.

In these cases, we instead write a pair of methods:
1) a public, non-recursive one with parameters the client wants
2) a private, recursive one with the parameters we really need

18

Exercise solution 2
// Prints information about this file,
// and (if it is a directory) any files inside it.
public static void crawl(File f) {

crawl(f, ""); // call private recursive helper
}

// Recursive helper to implement crawl/indent
behavior.

private static void crawl(File f, String indent) {
System.out.println(indent + f.getName());
if (f.isDirectory()) {

// recursive case; print contained files/dirs
File[] subFiles = f.listFiles();
for (int i = 0; i < subFiles.length; i++) {

crawl(subFiles[i], indent + " ");
}

}
}

19

Recursion Challenges
 Forgetting a base case

 Infinite recursion resulting in StackOverflowError

 Working away from the base case
 The recursive case must make progress towards the base case
 Infinite recursion resulting in StackOverflowError

 Running out of memory
 Even when making progress to the base case, some inputs

may require too many recursive calls: StackOverflowError

 Recomputing the same subproblem over and over again
 Refining the algorithm could save significant time

