Building Java Programs

Chapter 13
binary search and complexity

reading: 13.1-13.2

10/67/ 2018

DoO6S SPOTTED THIS WEEKEN D

—

|

WAITIN G PATIENTLY LITTLE WEENIE, Too
FAR AWAY

CS Concepts

« Client/Implementer

Data Structures

Lists
Stacks
Queues
Sets

Road Map

Java Language
» EXceptions
« Interfaces
« References

Java Collections

Arrays
ArrayList ¥
LinkedList ¥
Stack
TreeSet
HashSet

Sum this up for me

o Let’s write a method to calculate the sum from 1 to some n

pubilic i sEarie nE s e oo

it snam =20

for sbintdaeaile g rde ey
Sum +="9:

}

i A AN M A AR A R

* Gauss also has a way of solving this

e stEaErey i R s R e

D e AV MRS R O

e Which one is more efficient?

fg

Runtime Efficiency (13.2)

o efficiency: measure of computing resources used by code.
can be relative to speed (time), memory (space), etc.
most commonly refers to run time

* We want to be able to compare different algorithms to see
which is more efficient

e Let’s time the methods!

= 1
= 5

= 10

— 190

= 1,000

= 10,000,000

= 100,000,000

= o 1477 183 647

REEREE SR e e e i e)

e Downsides

suml
suml
suml
suml
suml
suml
suml

suml

took Dms,
ook s
ook Omse
took Oms;
took 0Oms,
took 1 Bms;
took 123Fms,
tookl8388ms,

Efficiency Try 1

sum?2
sum?2
sum?2
sum?2
sum?2
sum?2
sum?2

sum?2’

Different computers give different run times

The same computer gives different results!!! D:<

took
took
took
ook
took
ook
took
took

Oms
Oms
Oms
Oms
Oms
Oms
Oms

Oms

Efficiency — Try 2

* Count number of “simple steps” our algorithm takes to run
* Assume the following:
Any single Java statement takes same amount of time to run.

o ln e G e
e s R e e A e e S e
$ Sy S en Y olE DRI R R B e daye

A loop's runtime, if the loop repeats N times, is N times the
runtime of the statements in its body.

A method call's runtime is measured by the total runtime of
the statements inside the method's body.

Efficiency examples

piadaievababaiewadhamc Lo d il 1)
statementl;
statement2; 3

statement3;

o et s e et s e
statement4;
}

ot R E YR i g RN
statement5;
statement6;
statement?;

{

~

piodviev s ek wadamc Lo d)

oot n s e i N

Fortant g =l =N
statementl;

}

}

o ant di= iy anc= N b)
statement2?;
statement3;
statement4;
statement5;

{

{
j++)

{

{

>N2

\

J

> 4N

Efficiency examples 2
-

>N2+4N

.

* How many statements will execute if N = 10? If N = 10007

9

Sum this up for me

o Let’s write a method to calculate the sum from 1 to some n

publie ‘statriec dnkt suml (ing n} f o
int sum = O;:} 1
for sbintdaeaile g rde ey
sum += i; :}_ N >‘N + 2
}
return sum;)]

* Gauss also has a way of solving this
e stEaErey i R s R e
D e AV MRS R O }'1 1

e Which one is more efficient?
10

Visualizing Difference

Comparing sum1 and sum2

125

Number of steps

20 40 60 B0

100

- 5um1

- sum2

11

= =

fg

gorithm growth rates (13.2)

* We measure runtime in proportion to the input data size, N.
growth rate: Change in runtime as N changes.

* Say an algorithm runs 0.4N3 + 25N2 + 8N + 17
statements.

Consider the runtime when N is extremely large .

We ignore constants like 25 because they are tiny next to N.
The highest-order term (N3) dominates the overall runtime.

We say that this algorithm runs "on the order of" N3.
or O(N3) for short ("Big-Oh of N cubed")

12

based on the algorithm's relationship to the input size N.

Complexity classes

» complexity class: A category of algorithm efficiency

Class Big-Oh If you double N, ... Example
constant O(1) unchanged 10ms
logarithmic O(log, N) increases slightly 175ms
linear O(N) doubles 3.2 sec
log-linear O(N log, N) | slightly more than doubles 6 sec
quadratic O(N?2) quadruples 1 min 42 sec
cubic O(N3) multiplies by 8 55 min
exponential o(2\) multiplies drastically 5 * 106! years

13

1000

750

500

Operations

230

Complexity classes

= 0(1)

= O(logn)
= 0(n)

= (O(nlogn)
- 0(n*2)
- 0(2%n)
= O(n!)

20 40 60 B0 100

http://recursive-design.com/blog/2010/12/07/comp-sci-101-big-o-notation/ - post about a Google interview

14

Sequential search

*» sequential search: Locates a target value in an array /
list by examining each element from start to finish. Used in

indexof.

How many elements will it need to examine?

Example: Searching the array below for the value 42:

index

0

1

2

3

4

5

6

/

8

9

10

11

12

13

14

15

16

value

4

2

7/

10

15

20

22

25

30

36

42

50

56

68

85

92

103

The array is sorted. Could we take advantage of this?

22

» What is its complexity class?

public int indexOf (i1nt value)

{

Sequential search

For itinb il Qs ey i g D
1f (elementData[i] == wvalue) {
return il
} b
}
e = oy Sonn ol .
}
index| 01112 | 3456|789 10|11|112(13(14(15]| 16
value|-4 12| 7 (101520122 |25|30({36(42|50|56|68|85|92|103

* On average, "only" N/2 elements are visited
1/2 is a constant that can be ignored

23

fg

A‘Binary search (13.1)

e binary search: Locates a target value in a sorted array or
list by successively eliminating half of the array from
consideration.

How many elements will it need to examine?

Example: Searching the array below for the value 42:

index(0 |12 |3|4|5|6|7|8|9|10|11|12|13|14|15]| 16

value |-41 2|7 (10]15{20(22{25|30|36(42|50|56|68|85|92|103

min mid max

Binary search

e binary search successively eliminates half of the
elements.

Algorithm: Examine the middle element of the array.

- If it is too big, eliminate the right half of the array and repeat.
- If it is too small, eliminate the left half of the array and repeat.
- Else it is the value we're searching for, so stop.

Which indexes does the algorithm examine to find value 427
What is the runtime complexity class of binary search?

index| 0|12 (3(4|5|6|7|8]|9|10(11|12|13(14|15]| 16

value |-4 12| 7 (10[15/20(22|25|30|36|42|50|56|68|85|92|103

min mid max

fg

Binary search runtime

e For an array of size N, it eliminates 2 until 1 element
remains.
N N/2 N4 N/8 4 9 1

How many divisions does it take?

* Think of it from the other direction:
How many times do I have to multiply by 2 to reach N?
1,2,4,8, ..., N/4, N/2, N
Call this number of multiplications "x".
2*= N
X = log, N

e Binary search is in the logarithmic complexity class.

28

fg

" Collection efficiency

o Efficiency of our Java's ArraylList and LinkedList methods:

Method ArraylList | LinkedList
add O(1)* O(1)
add (index, value) O(N) O(N)
indexOf O(N) O(N)
get O(1) O(N)
remove O(N) O(N)
set O(1) O(N)
size O(1) O(1)

* Most of the time!

29

