
Building Java Programs

Chapter 10 & 11
Lists and Sets

reading: 10.1, 11.2

2

3

Week 2: 10/1-10/5
 Monday

 Client of Collections: Lists and Sets

 Tuesday
 Style

 Wednesday
 Stacks and Queues

 Thursday
 Stacks and Queues

 Friday
 Reference semantics
 Objects
 HW2

4

Collections
 collection: an object that stores data; a.k.a. "data

structure"
 the objects stored are called elements
 some collections maintain an ordering; some allow

duplicates
 typical operations: add, remove, clear, contains (search),

size

 examples found in the Java class libraries:
(covered in this course!)
 ArrayList, LinkedList, HashMap, TreeSet, PriorityQueue

 all collections are in the java.util package
import java.util.*;

5

Lists

 list: a collection of elements with 0-based indexes
 elements can be added to the front, back, or elsewhere
 a list has a size (number of elements that have been added)

6

ArrayList of primitives?
 The type you specify when creating an ArrayList must

be an object type; it cannot be a primitive type.

// illegal -- int cannot be a type parameter
ArrayList<int> list = new ArrayList<int>();

 But we can still use ArrayList with primitive types by
using special classes called wrapper classes in their place.

// creates a list of ints
ArrayList<Integer> list = new ArrayList<Integer>();

7

Wrapper classes

 A wrapper is an object whose sole purpose is to hold a primitive value.

 Once you construct the list, use it with primitives as normal:

ArrayList<Double> grades = new ArrayList<Double>();
grades.add(3.2);
grades.add(2.7);
...
double myGrade = grades.get(0);

Primitive
Type

Wrapper
Type

int Integer

double Double

char Character

boolean Boolean

8

Exercise
 Write a program that counts the number of unique words in

a large text file (say, Moby Dick or the King James Bible).

 Store the words in a collection and report the # of unique
words.

 Once you've created this collection, allow the user to search it
to see whether various words appear in the text file.

 What collection is appropriate for this problem?

9

The "for each" loop (7.1)
for (type name : collection) {

statements;
}

 Provides a clean syntax for looping over the elements of a
List, Set, array, or other collection

List<Double> grades = new ArrayList<Double>();
...

for (double grade : grades) {
System.out.println("Student's grade: " + grade);

}

 More readable and can be more efficient

10

Sets (11.2)
 set: A collection of unique values (no duplicates allowed)

that can perform the following operations efficiently:
 add, remove, search (contains)

 We don't think of a set as having indexes; we just
add things to the set in general and don't worry about order

set.contains("to") true

set

"the" "of"

"from"
"to"

"she"
"you"

"him""why"

"in"

"down"
"by"

"if"

set.contains("be") false

11

Set implementation
 in Java, sets are represented by Set type in java.util

 Set is implemented by HashSet and TreeSet classes

 TreeSet: implemented using a "binary search tree";
pretty fast: O(log N) for all operations
elements are stored in sorted order

 HashSet: implemented using a "hash table" array;
very fast: O(1) for all operations
elements are stored in unpredictable order

Note: This O(something) notation won’t be covered until next week. It’s okay not to
know what it means yet.

12

Set methods
Set<String> set = new TreeSet<String>(); // empty
Set<Integer> set2 = new HashSet<Integer>();
set.add(“hello”);
set.add(“goodbye”);
set.add(“hello”);
System.out.println(set); // [“goodbye”, “hello”]

add(value) adds the given value to the set
contains(value) returns true if the given value is found in this set

remove(value) removes the given value from the set
clear() removes all elements of the set
size() returns the number of elements in list
isEmpty() returns true if the set's size is 0

toString() returns a string such as "[3, 42, -7, 15]"

