Building Java Programs

Chapter 15
testing ArrayIntList;

pre/post conditions and exceptions

reading: 4.4 15.1 - 15.3

Searching methods

* Implement the following methods:
indexOf — returns first index of element, or -1 if not found
contains - returns true if the list contains the given int value

* Why do we need isEmpty and contains when we already
have indexOf and size ?

Adds convenience to the client of our class:
// less elegant // more elegant

if (myList.size() == 0) { if (myList.isEmpty()) {
PESAmyEI St andexOfEtd 20 s g if (myList.contains (42)) {

Class constants

public static final type name = value;

* class constant: a global, unchangeable value in a class
used to store and give names to important values used in code

documents an important value; easier to find and change
later

» classes will often store constants related to that type
Math.PI

Integer .MAX VALUE, Integer.MIN VALUE
Color.GREEN

// default array length for new ArrayIntLists
public istaric Fanad vane: DEEAURR CAPRC TN = 0

* precondition: Something your method assumes is true
at the start of its execution.

Often documented as a comment on the method's header:

// Returns the element at the given index.
// Precondition: 0 <= index < size
publicrant getitintandexy

return elementData[index];

}

Stating a precondition doesn't really "solve" the problem, but
it at least documents our decision and warns the client what
not to do.

What if we want to actually enforce the precondition?

" Bad precondition test

 What is wrong with the following way to handle violations?

// Returns the element at the given index.
// Precondition: 0 <= index < size
public int geb (int index)
if (index < 0 || index >= size) {
System.out.println("Bad index! " + index);
return -1;

}

return elementData[index];

returning -1 no better than returning O (could be legal value)
println is not a very strong deterrent to the client (esp. GUI)

f

Tﬁrowing exceptions (4.4)

throw new ExceptionType ()
throw new ExceptionType ("message") ;

* Generates an exception that will crash the program,
unless it has code to handle ("catch") the exception.

» Common exception types:

ArithmeticException, ArrayIndexOutOfBoundsException,
FileNotFoundException, IllegalArgumentException,
IllegalStateException, IOException,
NoSuchElementException, NullPointerException,
RuntimeException, UnsupportedOperationException

* Why would anyone ever want a program to crash?

Exception example

pubilvevantigebiiant undes)i
1f (index < 0 || 1ndex >= size) {
throw new ArrayIndexOutOfBoundsException (index) ;

}

return elementData[index];

» Exercise: Modify the rest of ArrayIntList to state
preconditions and throw exceptions as appropriate.

T : s
~ Private helper methods
private type name (type name, ..., type name) {

statement(s);
}

e a private method can be seen/called only by its own class

your object can call the method on itself, but clients cannot
call it

useful for "helper" methods that clients shouldn't directly
touch

private vo1d checklndex(int 1ndeX, 1nt min, 1nt max) |
T tindex s amin hlanaess o mae)

throw new IndexOutOfBoundsException (index) ;

Postconditions

e postcondition: Something your method promises will be
true at the end of its execution.

Often documented as a comment on the method's header:

// Precondition : size() < capacity
// Postcondition: value is added at the end of the list
public vord add(int valuey f

elementData[size] = value;

size++;

If your method states a postcondition, clients should be able to
rely on that statement being true after they call the method.

10

Not enough space

e What to do if client needs to add more than 10 elements?

valge 3 8 9 k5 2 g Bk h
size 10
liet vadd 1 5):: // add an 1llth element

Possible solution: Allow the client to construct the list with a
larger initial capacity.

11

rMuItipIe constructors

* Our list class has the following constructor:

onslod il e e W sl e Wil s
elementData = new int[10];
size = 0;

* Let's add a new constructor that takes a capacity
parameter:

public ArrayIntList (int capacity) ({
elementData = new int|[capacity];
SHlze T

}

The constructors are very similar. Can we avoid redundancy?

12

this keyword

* this : A reference to the implicit parameter
(the object on which a method/constructor is called)

* Syntax:
To refer to a field: this.field
To call a method: this.method (parameters) ;
To call a constructor this (parameters) ;

from another constructor:

13

Revised constructors

// Constructs a list with the given capacity.

Dibla e AFraVIREltI st iy 6 o0 Gl B
elementData = new 1int[capacity];
size = 0;

}

// Constructs a list with a default capacity of 10.

public ArrayIntList () {
this (10) ; // calls (int) constructor

J

14

~ ArraylList of primitives?

* The type you specify when creating an ArrayList must
be an object type; it cannot be a primitive type.

// illegal -- int cannot be a type parameter
Bl e o P Can i e c i e h e i gl ST e ()

 But we can still use ArrayList with primitive types by
using special classes called wrapper classes in their place.

// creates a list of ints
ArraylList<Integer> list = new ArraylList<Integer> () ;

15

Wrapper classes

Primitive Wrapper
Type Type
int Integer
dotble PDoubile
char Character
ol Boolean

* A wrapper is an object whose sole purpose is to hold a primitive value.

* Once you construct the list, use it with primitives as normal:

ArraylList<Double> grades = new ArraylList<Double> () ;

grades.add(3.2) ;
gradaesyaddi2 e

double myGrade = grades.get (0);
16

fg

jrhinking about testing

o If we wrote ArrayIntList and want to give it to others, we
must make sure it works adequately well first.

e Some programs are written specifically to test other
programs.
We could write a client program to test our list.
Its main method could construct several lists, add elements to
them, call the various other methods, etc.

We could run it and look at the output to see if it is correct.

Sometimes called a unit test because it checks a small unit of
software (one class).

- black box: Tests written without looking at the code being tested.
- white box: Tests written after looking at the code being tested.

17

Tips for testing

* You cannot test every possible input, parameter value, etc.
Think of a limited set of tests likely to expose bugs.

» Think about boundary cases
Positive; zero; negative numbers
Right at the edge of an array or collection's size

» Think about empty cases and error cases
0, -1, null; an empty list or array

» test behavior in combination
Maybe add usually works, but fails after you call remove
Make multiple calls; maybe size fails the second time only

18

- Example ArrayIntList test

B Y A S e R B e S

51 B) R A R A S

4B 1 A O SN S B B A B

helper (al, aZ2);

helper (a2, a3);

helper (new int[] {1, 2, 3, 4, 5}, new int[] {2, 3, 42, 4});
}

public static void helper (int[] elements, int[] expected) {
ArrayIntlList list = new ArrayIntlist(elements);
for (int 1 = 0; 1 < elements.length; 1++) {
lacs raddtelemen iy
}
list.remove (0) ;
Tivstiremonve iy s trysyze by iy
2 R B T o N A O eomeny L 1.
150 N I 1 B A o O N I AV = D ol Y e Y = WA ST e Bl A Vvl o) i

1if (list.get (i) != expected[i]) {
System.out.println("fail; expect " + Arrays.toString(expected)
S Vs b (1 A LA AR o

19

