
Building Java Programs

Chapter 15
testing ArrayIntList;

pre/post conditions and exceptions

reading: 4.4 15.1 - 15.3

2

3

Searching methods
 Implement the following methods:

 indexOf – returns first index of element, or -1 if not found
 contains - returns true if the list contains the given int value

 Why do we need isEmpty and contains when we already
have indexOf and size ?
 Adds convenience to the client of our class:

// less elegant // more elegant

if (myList.size() == 0) { if (myList.isEmpty()) {

if (myList.indexOf(42) >= 0) { if (myList.contains(42)) {

4

Class constants
public static final type name = value;

 class constant: a global, unchangeable value in a class
 used to store and give names to important values used in code
 documents an important value; easier to find and change

later

 classes will often store constants related to that type
 Math.PI
 Integer.MAX_VALUE, Integer.MIN_VALUE
 Color.GREEN

// default array length for new ArrayIntLists
public static final int DEFAULT_CAPACITY = 10;

5

Preconditions
 precondition: Something your method assumes is true

at the start of its execution.
 Often documented as a comment on the method's header:

// Returns the element at the given index.
// Precondition: 0 <= index < size
public int get(int index) {

return elementData[index];
}

 Stating a precondition doesn't really "solve" the problem, but
it at least documents our decision and warns the client what
not to do.

 What if we want to actually enforce the precondition?

6

Bad precondition test
 What is wrong with the following way to handle violations?

// Returns the element at the given index.
// Precondition: 0 <= index < size
public int get(int index) {

if (index < 0 || index >= size) {
System.out.println("Bad index! " + index);
return -1;

}
return elementData[index];

}

 returning -1 no better than returning 0 (could be legal value)
 println is not a very strong deterrent to the client (esp. GUI)

7

Throwing exceptions (4.4)
throw new ExceptionType();
throw new ExceptionType("message");

 Generates an exception that will crash the program,
unless it has code to handle ("catch") the exception.

 Common exception types:
 ArithmeticException, ArrayIndexOutOfBoundsException,
FileNotFoundException, IllegalArgumentException,
IllegalStateException, IOException,
NoSuchElementException, NullPointerException,
RuntimeException, UnsupportedOperationException

 Why would anyone ever want a program to crash?

8

Exception example
public int get(int index) {

if (index < 0 || index >= size) {
throw new ArrayIndexOutOfBoundsException(index);

}
return elementData[index];

}

 Exercise: Modify the rest of ArrayIntList to state
preconditions and throw exceptions as appropriate.

9

Private helper methods
private type name(type name, ..., type name) {

statement(s);
}

 a private method can be seen/called only by its own class
 your object can call the method on itself, but clients cannot

call it
 useful for "helper" methods that clients shouldn't directly

touch

private void checkIndex(int index, int min, int max) {

if (index < min || index > max) {

throw new IndexOutOfBoundsException(index);

}

}

10

Postconditions
 postcondition: Something your method promises will be

true at the end of its execution.
 Often documented as a comment on the method's header:

// Precondition : size() < capacity
// Postcondition: value is added at the end of the list
public void add(int value) {

elementData[size] = value;
size++;

}

 If your method states a postcondition, clients should be able to
rely on that statement being true after they call the method.

11

Not enough space
 What to do if client needs to add more than 10 elements?

 list.add(15); // add an 11th element

 Possible solution: Allow the client to construct the list with a
larger initial capacity.

index 0 1 2 3 4 5 6 7 8 9
value 3 8 9 7 5 12 4 8 1 6

size 10

12

Multiple constructors
 Our list class has the following constructor:

public ArrayIntList() {
elementData = new int[10];
size = 0;

}

 Let's add a new constructor that takes a capacity
parameter:

public ArrayIntList(int capacity) {
elementData = new int[capacity];
size = 0;

}

 The constructors are very similar. Can we avoid redundancy?

13

this keyword
 this : A reference to the implicit parameter

(the object on which a method/constructor is called)

 Syntax:

 To refer to a field: this.field

 To call a method: this.method(parameters);

 To call a constructor this(parameters);
from another constructor:

14

Revised constructors
// Constructs a list with the given capacity.
public ArrayIntList(int capacity) {

elementData = new int[capacity];
size = 0;

}

// Constructs a list with a default capacity of 10.
public ArrayIntList() {

this(10); // calls (int) constructor
}

15

ArrayList of primitives?
 The type you specify when creating an ArrayList must

be an object type; it cannot be a primitive type.

// illegal -- int cannot be a type parameter
ArrayList<int> list = new ArrayList<int>();

 But we can still use ArrayList with primitive types by
using special classes called wrapper classes in their place.

// creates a list of ints
ArrayList<Integer> list = new ArrayList<Integer>();

16

Wrapper classes

 A wrapper is an object whose sole purpose is to hold a primitive value.

 Once you construct the list, use it with primitives as normal:

ArrayList<Double> grades = new ArrayList<Double>();
grades.add(3.2);
grades.add(2.7);
...
double myGrade = grades.get(0);

Primitive
Type

Wrapper
Type

int Integer

double Double

char Character

boolean Boolean

17

Thinking about testing
 If we wrote ArrayIntList and want to give it to others, we

must make sure it works adequately well first.

 Some programs are written specifically to test other
programs.
 We could write a client program to test our list.
 Its main method could construct several lists, add elements to

them, call the various other methods, etc.
 We could run it and look at the output to see if it is correct.

 Sometimes called a unit test because it checks a small unit of
software (one class).
 black box: Tests written without looking at the code being tested.
 white box: Tests written after looking at the code being tested.

18

Tips for testing
 You cannot test every possible input, parameter value, etc.

 Think of a limited set of tests likely to expose bugs.

 Think about boundary cases
 Positive; zero; negative numbers
 Right at the edge of an array or collection's size

 Think about empty cases and error cases
 0, -1, null; an empty list or array

 test behavior in combination
 Maybe add usually works, but fails after you call remove
 Make multiple calls; maybe size fails the second time only

19

Example ArrayIntList test
public static void main(String[] args) {

int[] a1 = {5, 2, 7, 8, 4};
int[] a2 = {2, 7, 42, 8};
int[] a3 = {7, 42, 42};
helper(a1, a2);
helper(a2, a3);
helper(new int[] {1, 2, 3, 4, 5}, new int[] {2, 3, 42, 4});

}

public static void helper(int[] elements, int[] expected) {
ArrayIntList list = new ArrayIntList(elements);
for (int i = 0; i < elements.length; i++) {

list.add(elements[i]);
}
list.remove(0);
list.remove(list.size() - 1);
list.add(2, 42);
for (int i = 0; i < expected.length; i++) {

if (list.get(i) != expected[i]) {
System.out.println("fail; expect " + Arrays.toString(expected)

+ ", actual " + list);
}

}
}

