
 CSE143 Final
Summer 2017

Name of Student: __

Section (e.g., AA):_______________________ Student Number: __________________

The exam is divided into two parts. This is part one with 3 questions total.

 # Problem Area Points Score

 1 Inheritance/Polymorphism 10 _______

 2 Binary Trees 10 _______

 3 LinkedIntList 20 _______

 Total 40

This is a closed-book/closed-note exam. Space is provided for your answers.
There is a "cheat sheet" at the end that you can use as scratch paper. You are
not allowed to access any of your own papers during the exam.
You may not use calculators or any other devices.

The exam is not, in general, graded on style and you do not need to include
comments. For the stack/queue and collections questions, however, you are
expected to use generics properly and to declare variables using interfaces when
possible. You may only use the Stack and Queue methods on the cheat sheet, which
are the methods we discussed in class. You are not allowed to use programming
constructs like break, continue, or returning from a void method on this exam.
Do not use constructs from Java 8.

Do not abbreviate code, such as "ditto" marks or dot-dot-dot ... marks.

You are NOT to use any electronic devices while taking the test, including
calculators. Anyone caught using an electronic device will receive a 10 point
penalty.

Do not begin work on this exam until instructed to do so. Any student who
starts early or who continues to work after time is called will receive a 10
point penalty.

If you finish the exam early, please hand your exam to the instructor and exit
quietly through the front door.

1. Details of inheritance, 10 points. Assuming that the following classes have
 been defined:

 public class Morty extends Beth {
 public void method1() {
 System.out.println("Morty 1");
 }

 public void method3() {
 System.out.println("Morty 3");
 }
 }

 public class Rick {
 public void method1() {
 System.out.println("Rick 1");
 }

 public void method2() {
 System.out.println("Rick 2");
 method1();
 }
 }

 public class Beth extends Rick {
 public void method1() {
 System.out.println("Beth 1");
 super.method1();
 }
 }

 public class Summer extends Rick {
 public void method3() {
 System.out.println("Summer 3");
 }
 }

And assuming the following variables have been defined:

 Rick var1 = new Morty();
 Rick var2 = new Beth();
 Rick var3 = new Rick();
 Object var4 = new Beth();
 Beth var5 = new Morty();
 Object var6 = new Summer();

In the table below, indicate in the right-hand column the output produced by
the statement in the left-hand column. If the statement produces more than one
line of output, indicate the line breaks with slashes as in "a/b/c" to indicate
three lines of output with "a" followed by "b" followed by "c". If the
statement causes an error, fill in the right-hand column with either the phrase
"compiler error" or "runtime error" to indicate when the error would be
detected.

 Statement Output
 --

 var1.method1(); ____________________________

 var2.method1(); ____________________________

 var3.method1(); ____________________________

 var4.method1(); ____________________________

 var5.method1(); ____________________________

 var6.method1(); ____________________________

 var1.method2(); ____________________________

 var2.method2(); ____________________________

 var3.method2(); ____________________________

 var4.method2(); ____________________________

 var5.method2(); ____________________________

 var6.method2(); ____________________________

 ((Beth)var1).method3(); ____________________________

 ((Summer)var6).method3(); ____________________________

 ((Morty)var4).method1(); ____________________________

 ((Rick)var6).method2(); ____________________________

 ((Rick)var4).method1(); ____________________________

 ((Beth)var6).method3(); ____________________________

 ((Morty)var3).method3(); ____________________________

 ((Morty)var5).method3(); ____________________________

2. Binary Trees, 10 points. Write a method called hasPathSum that takes an
 integer n as a parameter and that returns true if there is some nonempty
 path from the overall root of a tree to a node of the tree in which the sum
 of the data stored in the nodes on that path adds up to n (returning false if
 no such path exists). For example if the variable t refers to the following tree:
 +----+
 | 5 |
 +----+
 / \
 +----+ +----+
 | 1 | | 21 |
 +----+ +----+
 / \ \
 +----+ +----+ +----+
 | -9 | | 2 | | 20 |
 +----+ +----+ +----+
 / \ / \
 +----+ +----+ +----+ +----+
 | 3 | | 30 | | 13 | | 4 |
 +----+ +----+ +----+ +----+
 Below are various calls and an explanation for the value returned:
 t.hasPathSum(8) returns true because of the path (5, 1, 2)
 t.hasPathSum(26) returns true because of the path (5, 21)
 t.hasPathSum(0) returns true because of the path (5, 1, -9, 3)
 t.hasPathSum(5) returns true because of the path (5)
 t.hasPathSum(1) returns false because no path with that sum exists

 You are writing a public method for a binary tree class defined as follows:
 public class IntTreeNode {
 public int data; // data stored in this node
 public IntTreeNode left; // reference to left subtree
 public IntTreeNode right; // reference to right subtree

 <constructors>
 }

 public class IntTree {
 private IntTreeNode overallRoot;

 <methods>
 }

 You are writing a method that will become part of the IntTree class. You
 may define private helper methods to solve this problem, but otherwise you
 may not call any other methods of the class. You may not construct any
 extra data structures to solve this problem.

 Space is provided on the next page.	

This page is left blank for space on #2	

3. Linked Lists, 20 points. Write a method called weave that takes a list of
 integers as a parameter and that combines the values from the second list
 into the first list in an alternating fashion, leaving the second list
 empty. The new list should start with the first value of the first list
 followed by the first value of the second list followed by the second value
 of the first list followed by the second value of the second list, and so
 on. For example, if the variables list1 and list2 store the following:

 list1 = [0, 2, 4, 6], list2 = [1, 3, 5, 7]

 If you make the following call:

 list1.weave(list2);

 then the lists should store the following values after the call:

 list1 = [0, 1, 2, 3, 4, 5, 6, 7], list2 = []

 Notice that the second list is empty after the call and that the values that
 were in the second list have been moved into the first list in an
 alternating fashion. If the call had instead been:

 list2.weave(list1);

 then the lists would have stored the following values after the call:

 list1 = [], list2 = [1, 0, 3, 2, 5, 4, 7, 6]

 These examples use sequential integers to make it easier to see the intended
 order, but the values can be any numbers at all. It is also possible that
 one list will have more values than the other, in which case its values
 should simply be appended to the end of the list. For example, if the lists
 store these values:

 list1 = [3, 18, 9], list2 = [-5, 4, 13, 42, 0, 23]

 then the call list1.weave(list2) should produce this result:

 list1 = [3, -5, 18, 4, 9, 13, 42, 0, 23], list2 = []

 while the call list2.weave(list1) should produce this result:

 list1 = [], list2 = [-5, 3, 4, 18, 13, 9, 42, 0, 23]

 You are writing a public method for a linked list class defined as follows:

 public class ListNode {
 public int data; // data stored in this node
 public ListNode next; // link to next node in the list

 <constructors>
 }

 public class LinkedIntList {
 private ListNode front;

 <methods>
 }

 <continued on next page>

 You are writing a method that will become part of the LinkedIntList class.
 Both lists are of type LinkedIntList. You may define private helper methods
 to solve this problem, but otherwise you may not assume that any particular
 methods are available. You are allowed to define your own variables of type
 ListNode, but you may not construct any new nodes, and you may not use any
 auxiliary data structure to solve this problem (no array, ArrayList, stack,
 queue, String, etc). You also may not change any data fields of the nodes.
 You MUST solve this problem by rearranging the links of the lists. Your
 solution must run in O(n) time where n is the length of the list.

	

CSE143 Final
Summer 2017

Name of Student: __

Section (e.g., AA):_______________________ Student Number: __________________

The exam is divided into two parts. This is part two with 5 questions total.

 # Problem Area Points Score

 4 Binary Tree Traversal 6 _______

 5 Binary Search Tree 4 _______

 6 Collection Programming 10 _______

 7 Comparable 20 _______

 8 Binary Tree Programming 20 _______

 9 Extra Credit Fiction 1 _______

 Total 100 _______

This is a closed-book/closed-note exam. Space is provided for your answers.
There is a "cheat sheet" at the end that you can use as scratch paper. You are
not allowed to access any of your own papers during the exam.
You may not use calculators or any other devices.

The exam is not, in general, graded on style and you do not need to include
comments. For the stack/queue and collections questions, however, you are
expected to use generics properly and to declare variables using interfaces when
possible. You may only use the Stack and Queue methods on the cheat sheet, which
are the methods we discussed in class. You are not allowed to use programming
constructs like break, continue, or returning from a void method on this exam.
Do not use constructs from Java 8.

Do not abbreviate code, such as "ditto" marks or dot-dot-dot ... marks.

You are NOT to use any electronic devices while taking the test, including
calculators. Anyone caught using an electronic device will receive a 10
point penalty.

Do not begin work on this exam until instructed to do so. Any student who
starts early or who continues to work after time is called will receive a 10
point penalty.

If you finish the exam early, please hand your exam to the instructor and exit
quietly through the front door.

4. Binary Tree Traversals, 6 points. Consider the following tree.

 +---+
 | 4 |
 +---+
 / \
 / \
 +---+ +---+
 | 5 | | 6 |
 +---+ +---+
 / \ / \
 / \ / \
 +---+ +---+ +---+ +---+
 | 2 | | 3 | | 0 | | 1 |
 +---+ +---+ +---+ +---+
 \ \ /
 \ \ /
 +---+ +---+ +---+
 | 9 | | 7 | | 8 |
 +---+ +---+ +---+

 Fill in each of the traversals below:

 Preorder traversal __

 Inorder traversal __

 Postorder traversal __

5. Binary Search Tree, 4 points. Draw a picture below of the binary search
 tree that would result from inserting the following words into an empty
 binary search tree in the following order:

 Lucille, Gob, Maeby, Lindsay, Tobias, Buster, Michael

 Assume the search tree uses alphabetical ordering to compare words.

6. Collections Programming, 10 points. Write a method called split that
 takes a set of strings as a parameter and that returns the result of
 splitting the strings into different sets based on the length of the
 strings. In particular, your method should return a map whose keys are
 integers and whose values are sets of strings of that length. For example,
 if a variable called words contains the following set of strings:

 [to, be, or, not, that, is, the, question]

 then the call split(words) should return a map whose values are sets of
 strings of equal length and whose keys are the string lengths:

 {2=[be, is, or, to], 3=[not, the], 4=[that], 8=[question]}

 Notice that strings of length 2 like "be" and "is" appear in a set whose key
 is 2. If the set had instead stored these strings:

 [four, score, and, seven, years, ago, our, fathers, brought, forth]

 Then the method would return this map:

 {3=[ago, and, our], 4=[four], 5=[forth, score, seven, years],
 7=[brought, fathers]}

 The set of strings passed to your method will not necessarily be in order,
 but the map returned by your method should be ordered numerically by key and
 each set contained in the map should be ordered alphabetically, as in the
 examples above.

 Your method should construct the new map and each of the sets contained in
 the map but should otherwise not construct any new data structures. It
 should also not modify the set of words passed as a parameter.

7. Comparable class, 20 points. Define a class called AdmissionsEntry that
 keeps track of information for an admissions candidate and how that
 candidate is rated by reviewers (real numbers between 0.0 and 5.0). The
 class has the following public methods:

 AdmissionsEntry(id) constructs an AdmissionsEntry object with given ID
 rate(rating) records a rating for the candidate
 flag() flags the candidate to definitely be discussed
 getID() returns the ID of the candidate
 getRating() returns the average rating (0.0 if no ratings)
 toString() returns a String with ID and average rating

 Below is an example for a candidate that has been reviewed four times:

 AdmissionsEntry entry = new AdmissionsEntry("2222222");
 entry.rate(3.75);
 entry.rate(3.65);
 entry.rate(3.8);
 entry.rate(3.75);
 entry.flag();

 After these calls, the call entry.getRating() would return 3.7375 (the
 average of the ratings). The toString method should return a string
 composed of the ID, a colon, and the average rating rounded to 2 digits
 after the decimal point ("2222222: 3.74" for this example). If there are no
 ratings, then getRating and toString should indicate a rating of 0.0.

 Each AdmissionsEntry object should keep track of whether that candidate
 should be discussed by the admissions committee. Any candidate who receives
 a score of 4.0 or higher should be discussed even if their average rating is
 below 4.0. Notice also that a candidate can be flagged for discussion even
 if none of the ratings are 4.0 or higher, as in the example above.

 The AdmissionsEntry class should implement the Comparable<E> interface.
 Define the method so that when sorted, a list of entries will have students
 to be discussed appearing first followed by students not to be discussed.
 Within those groups, students with higher average ratings should appear
 earlier in the list. Students with the same discussion status and the same
 average rating should appear in increasing order by ID. Recall that values
 considered "less" appear earlier in a sorted list. You may not use Double
 objects or methods of the Double class to solve this problem.

This page is left blank for space on #7	

8. Binary Trees, 20 points. Write a method called add that takes as a
 parameter a reference to a second binary tree and that adds the values in
 the second tree to this tree. If the method is called as follows:

 tree1.add(tree2);

 it should add all values in tree2 to the corresponding nodes in tree1. In
 other words, the value stored at the root of tree2 should be added to the
 value stored at the root of tree1 and the values in tree2's left and right
 subtrees should be added to the corresponding positions in tree1's left and
 right subtrees. The values in tree2 should not be changed by your method.

 initial tree1 initial tree2 final tree1
 +---+ +---+ +---+
 | 1 | | 2 | | 3 |
 +---+ +---+ +---+
 / \ / \ / \
 +---+ +---+ +---+ +---+ +---+ +---+
 | 4 | | 7 | | 3 | | 1 | | 7 | | 8 |
 +---+ +---+ +---+ +---+ +---+ +---+

 If tree1 has a node that has no corresponding node in tree2, then that node
 is unchanged. For example, if tree2 is empty, tree1 is not changed at all.

 It is also possible that tree2 will have one or more nodes that have no
 corresponding node in tree1. For each such node, create a new node in tree1
 in the corresponding position with the value stored in tree2's node. For
 example:

 initial tree1 initial tree2 final tree1
 +---+ +---+ +---+
 | 6 | | 1 | | 7 |
 +---+ +---+ +---+
 / / \ / \
 +---+ +---+ +---+ +---+ +---+
 | 2 | | 4 | | 5 | | 6 | | 5 |
 +---+ +---+ +---+ +---+ +---+
 / \ / \
 +---+ +---+ +---+ +---+
 | 8 | | 2 | | 8 | | 2 |
 +---+ +---+ +---+ +---+

 You are writing a public method for a binary tree class defined as follows:

 public class IntTreeNode {
 public int data; // data stored in this node, note: not final
 public IntTreeNode left; // reference to left subtree
 public IntTreeNode right; // reference to right subtree

 public IntTreeNode(int data, IntTreeNode left, IntTreeNode right) {
 this.data = data;
 this.left = left;
 this.right = right;
 }
 }

 public class IntTree {
 private IntTreeNode overallRoot;

 <methods>
 }

 <continued on next page>

 You are writing a method that will become part of the IntTree class. You
 may define private helper methods to solve this problem, but otherwise you
 may not assume that any particular methods are available. You are NOT to
 replace any of the existing nodes in the tree. You will, however, construct
 new nodes to be inserted into the tree as described above.

9. Fiction, 1 point extra credit. Your TA has woken up and discovered that they
 now have a super power. Decide what super power your TA would have and what
 they would do now that they are a super. You may express your answer in any
 way you choose by writing a story, drawing a picture, writing a poem, etc.
 If your answer below indicates at least 1 minute of effort, you will receive
 full credit, although your TA would probably appreciate it if you put in a
 little more effort.

