

Page 1 of 11

CSE 143 Practice Final Exam #0

1. Binary Tree Traversals. Consider the following tree.

 +---+
 | 2 |
 +---+
 / \
 / \
 +---+ +---+
 | 7 | | 6 |
 +---+ +---+
 / \ \
 / \ \
 +---+ +---+ +---+
 | 9 | | 0 | | 1 |
 +---+ +---+ +---+
 / \ / \
 / \ / \
 +---+ +---+ +---+ +---+
 | 5 | | 3 | | 4 | | 8 |
 +---+ +---+ +---+ +---+

 Fill in each of the traversals below:

 Preorder traversal ___

 Inorder traversal ___

 Postorder traversal ___

2. Binary Search Tree. Draw a picture below of the binary search tree that would result from inserting the following words
into an empty binary search tree in the following order: Legolas, Frodo, Sam, Merry, Pippin, Aragorn, Gimli, Boromir.

Page 2 of 11

3. Collections Mystery. Consider the following method:

 public List<Integer> mystery(int[][] data) {
 List<Integer> result = new LinkedList<Integer>();
 for (int i = 0; i < data.length; i++) {
 int sum = 0;
 for (int j = 0; j < data[i].length; j++) {
 sum = sum + j * data[i][j];
 }
 result.add(sum);
 }
 return result;
 }

In the left-hand column below are specific two-dimensional arrays. Indicate in the right-hand column what values would
be stored in the list returned by method mystery if the array in the left-hand column is passed as a parameter to mystery.

 Two-Dimensional Array Contents of List Returned

 [[1, 2, 3], [4, 5, 6]] _______________________

 [[3, 4], [1, 2, 3], [], [5, 6]] _______________________

 [[1, 2, 3], [4, 5, 6], [7, 8, 9]] _______________________

Page 3 of 11

4. Details of Inheritance.

Assuming that the following classes have been
defined:

public class Gorge extends Cliff {
 public void method2() {
 System.out.println("Gorge 2");
 }

 public void method3() {
 System.out.println("Gorge 3");
 }
}

public class Hill extends Peak {
 public void method2() {
 System.out.println("Hill 2");
 }

 public void method3() {
 System.out.println("Hill 3");
 }
}

public class Peak {
 public void method1() {
 System.out.println("Peak 1");
 method3();
 }

 public void method3() {
 System.out.println("Peak 3");
 }
}

public class Cliff extends Peak {
 public void method3() {
 System.out.println("Cliff 3");
 super.method3();
 }
}

 And assuming the following variables have been
defined:

Peak var1 = new Cliff();
Gorge var2 = new Gorge();
Peak var3 = new Hill();
Peak var4 = new Gorge();
Peak var5 = new Peak();
Object var6 = new Cliff();

In the table below, indicate in the right-hand column the output
produced by the statement in the left-hand column. If the statement
produces more than one line of output, indicate the line breaks with
slashes as in "a/b/c" to indicate three lines of output with "a"
followed by "b" followed by "c". If the statement causes an error,
fill in the right-hand column with either the phrase "error".

Statement Output

var1.method1(); _____________________

var2.method1(); _____________________

var3.method1(); _____________________

var4.method1(); _____________________

var5.method1(); _____________________

var6.method1(); _____________________

var1.method2(); _____________________

var2.method2(); _____________________

var3.method2(); _____________________

var1.method3(); _____________________

var2.method3(); _____________________

var3.method3(); _____________________

((Gorge)var6).method1();_____________________

((Cliff)var3).method2();_____________________

((Gorge)var4).method2();_____________________

((Gorge)var3).method2();_____________________

((Hill)var3).method2(); _____________________

((Gorge)var1).method1();_____________________

((Cliff)var4).method3();_____________________

((Peak)var6).method3(); _____________________

Page 4 of 11

5. Binary Trees. Write a toString method for a binary tree of integers. The method should return "empty" for an empty
tree. For a leaf node, it should return the data in the node as a String. For a branch node, it should return a parenthesized
String that has three elements separated by commas: the data at the root followed by a String representation of the left
subtree followed by a String representation of the right subtree. For example, if a variable t stores a reference to the
following tree:
 +---+
 | 2 |
 +---+
 / \
 +---+ +---+
 | 8 | | 1 |
 +---+ +---+
 / / \
 +---+ +---+ +---+
 | 0 | | 7 | | 6 |
 +---+ +---+ +---+
 / \
 +---+ +---+
 | 4 | | 9 |
 +---+ +---+

 then the call t.toString() should return the following String:

 "(2, (8, 0, empty), (1, (7, 4, empty), (6, empty, 9)))"

 The quotes above are used to indicate that this is a String but should not be included in the String that you return.

 You are writing a public method for a binary tree class defined as follows:
 public class IntTreeNode {
 public int data; // data stored in this node
 public IntTreeNode left; // reference to left subtree
 public IntTreeNode right; // reference to right subtree

 <constructors>
 }

 public class IntTree {
 private IntTreeNode overallRoot;

 <methods>
 }

You may define private helper methods to solve this problem, but otherwise you may not call any other methods of the
class. You may not define any auxiliary data structures to solve this problem.

Page 5 of 11

6. Collections Programming. Write a method called sumStrings takes a map whose keys are strings and whose values are
points and that returns a map that associates each point with the sum of the lengths of the strings it is associated with in
the first map.

For example, suppose that a map called data has the following associations:

{a=[x=1,y=3], apple=[x=7,y=7], be=[x=4,y=7], bear=[x=7,y=4], carpet=[x=2,y=19],
cat=[x=1,y=3], dog=[x=2,y=18], specialty=[x=7,y=4], student=[x=1,y=3],
umbrella=[x=42,y=8]}

 Then the call sumStrings(data) should return the following map:

{[x=7,y=7]=5, [x=42,y=8]=8, [x=2,y=18]=3, [x=1,y=3]=11, [x=2,y=19]=6,
[x=7,y=4]=13, [x=4,y=7]=2}

Notice that the point [x=7,y=7] maps to 5 in the result because it was associated with a string of length 5 in the original
("apple"). Notice that [x=1,y=3] maps to 11 because it was associated with three strings ("a", "cat", "student") whose
lengths add up to 11 (1, 3, 7).

 Your method should construct the new map and can construct iterators but should otherwise not construct any new data
structures. It should also not modify the map passed as a parameter and it should be reasonably efficient.

7. Comparable class. Define a class called TimeSpan that keeps track of an amount of time. A time span can be thought
of in two ways. You can think of it as being a certain number of hours, minutes, and seconds where each hour is
composed of 60 minutes and each minute is composed of 60 seconds. Or you can think of it as the total number of
seconds. The class has the following public methods:

 TimeSpan(hrs, min, sec) constructs a TimeSpan object with the given , minutes, and seconds
 hours() returns the number of hours
 minutes() returns the number of minutes (0 to 59)
 seconds() returns the number of seconds (0 to 59)
 totalSeconds() returns the total number of seconds including minutes and hours components
 add(other) returns a new TimeSpan object formed by adding TimeSpan to the other TimeSpan
 toString() returns a string in the form "hhh:mm:ss"

 For example, the following code constructs three TimeSpan objects:
 TimeSpan t1 = new TimeSpan(18, 3, 54);
 TimeSpan t2 = new TimeSpan(95, 58, 7);
 TimeSpan t3 = t1.add(t2);
The first TimeSpan object is expressed as 18 hours, 3 minutes, and 54 seconds. The totalSeconds method would report
this as 65034 seconds. The call t1.toString() should produce "18:03:54". Notice that the minutes are reported as two digits
even when it is a single digit. The same should be true of the seconds, so t2.toString() should produce the string
"95:58:07". Your class should make sure that minutes and seconds are always reported as being between 0 and 59. When
t1 and t2 are added together to produce t3, the resulting time should be reported as 114 hours, 2 minutes, and 1 second,
with t3.toString() returning "114:02:01".

Your constructor should throw an IllegalArgumentException if any value passed to it is negative. It should fix values of
minutes and seconds that are higher than 59, adjusting hours and minutes appropriately. For example, given the following
call:
 TimeSpan t4 = new TimeSpan(4, 65, 100);

the resulting TimeSpan object should be reported as 5 hours, 6 minutes, and 40 seconds with t4.toString() returning
"5:06:40". The TimeSpan class should implement the Comparable<E> interface, where a shorter amount of time is
considered less than a longer amount of time.

Page	6	of	11	

8.	Binary	Trees,	20	points.		Write	a	method	tighten	that	eliminates	branch	nodes	that	have	only	one	child	from	a	binary	tree	of	

integers.		For	example,		if	a	variable	called	t	stores	a	reference	to	the	following	tree:	

 +----+
 | 12 |
 +----+
 / \
 / \
 +----+ +----+
 | 28 | | 19 |
 +----+ +----+
 / /
 / /
 +----+ +----+
 | 94 | | 32 |
 +----+ +----+
 / \ \
 / \ \
 +----+ +----+ +----+
 | 65 | | -8 | | 72 |
 +----+ +----+ +----+
 \ / \
 \ / \
 +----+ +----+ +----+
 | 10 | | 42 | | 50 |
 +----+ +----+ +----+

			then	the	call:	

 t.tighten();

			should	leave	t	storing	the	following	tree:	

 +----+
 | 12 |
 +----+
 / \
 / \
 +----+ +----+
 | 94 | | 72 |
 +----+ +----+
 / \ / \
 / \ / \
 +----+ +----+ +----+ +----+
 | 65 | | 10 | | 42 | | 50 |
 +----+ +----+ +----+ +----+
	

			Notice	that	the	nodes	that	stored	the	values	28,	19,	32,	and	-8	have	all		been	eliminated	from	the	tree	because	each	had	one	child.			

			When	a	node	is	

			removed,	it	is	replaced	by	its	child.		Notice	that	this	can	lead	to	multiple	

			replacements	because	the	child	might	itself	be	replaced	(as	in	the	case	of	

			19	which	is	replaced	by	its	child	32	which	is	replaced	by	its	child	72).	

	

			You	are	writing	a	public	method	for	a	binary	tree	class	defined	as	follows:	

Page	6	of	11	

 public class IntTreeNode {
 public int data; // data stored in this node
 public IntTreeNode left; // reference to left subtree
 public IntTreeNode right; // reference to right subtree

 <constructors>
 }

 public class IntTree {
 private IntTreeNode overallRoot;

 <methods>
 }

 You are writing a method that will become part of the IntTree class. You
 may define private helper methods to solve this problem, but otherwise you
 may not assume that any particular methods are available. You are not
 allowed to change the data fields of the existing nodes in the tree (what we
 called "morphing" in assignments 7 and 8), you are not allowed to construct
 new nodes or additional data structures, and your solution must run in O(n)
 time where n is the number of nodes in the tree.
	

Page 7 of 11

9. Linked Lists. Write a method called rearrange that rearranges the order of a list of integers so that all of the values in
even-numbered positions appear in reverse order followed by all of the values in odd-numbered positions in forward
order. We are using zero-based indexing, as with Java arrays and lists, where the first element is considered to be at
position 0. For example, if a variable called list stores these values:

 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

and you make the following call:

 list.rearrange();

the list should store the following values after the call:

 [8, 6, 4, 2, 0, 1, 3, 5, 7, 9]

In this example the values in the original list were equal to their positions and there were an even number of elements, but
that won't necessarily be the case. For example, if the list had instead stored:

 [3, 8, 15, 9, 4, 42, 5]

 then after a call on rearrange it would store:

 [5, 4, 15, 3, 8, 9, 42]

 If the list has fewer than two elements, it should be unchanged by a call on rearrange.

 You are writing a public method for a linked list class defined as follows:

 public class ListNode {
 public int data; // data stored in this node
 public ListNode next; // link to next node in the list

 <constructors>
 }

 public class LinkedIntList {
 private ListNode front;

 <methods>
 }

You are writing a method that will become part of the LinkedIntList class. You may define private helper methods to
solve this problem, but otherwise you may not assume that any particular methods are available. You are allowed to
define your own variables of type ListNode, but you may not construct any new nodes, and you may not use any auxiliary
data structure to solve this problem (no array, ArrayList, stack, queue, String, etc). You also may not change any data
fields of the nodes. You MUST solve this problem by rearranging the links of the list. Your solution must run in O(n) time
where n is the length of the list.

