
1 of 12

1. Binary Tree Traversal
Consider the following tree:
 +---+
 | 4 |
 +---+
 / \
 / \
 +---+ +---+
 | 1 | | 9 |
 +---+ +---+
 / \ /
 / \ /
 +---+ +---+ +---+
 | 6 | | 0 | | 2 |
 +---+ +---+ +---+
 / \
 / \
 +---+ +---+
 | 3 | | 8 |
 +---+ +---+
 \ \
 \ \
 +---+ +---+
 | 7 | | 5 |
 +---+ +---+
Fill in each of the traversals below :

• Pre-order: __

• In-order: __

• Post-order: ___

2. Binary Search Tree
Draw a picture below of the binary search tree that would result from inserting the following words into an empty
binary search tree in the following order: Facebook, Accenture, Nintendo, Expedia, Amazon, Microsoft, Zillow,
Google. Assume the search tree uses alphabetical ordering to compare words.

2 of 12

3. Inheritance/Polymorphism Mystery
Consider the following classes:

public class Clock extends Bear {
 public void method3() {
 System.out.println("Clock 3");
 }
}

public class Lamp extends Can {
 public void method1() {
 System.out.println("Lamp 1");
 }

 public void method3() {
 System.out.println("Lamp 3");
 }
}

public class Bear extends Can {
 public void method1() {
 System.out.println("Bear 1");
 }

 public void method3() {
 System.out.println("Bear 3");
 super.method3();
 }
}

public class Can {
 public void method2() {
 System.out.println("Can 2");
 method3();
 }

 public void method3() {
 System.out.println("Can 3");
 }

 }

and that the following variables are defined:
 Object var1 = new Bear();
 Can var2 = new Can();
 Can var3 = new Lamp();
 Bear var4 = new Clock();
 Object var5 = new Can();
 Can var6 = new Clock();

In the table below, indicate in the right-hand column the output
produced by the statement in the left-hand column. If the
statement produces more than one line of output, indicate the
line breaks with slashes as in "a/b/c" to indicate three lines of
output with "a" followed by "b" followed by "c". If the
statement causes an error, fill in the right-hand column with
either the phrase "compiler error" or "runtime error" to indicate
when the error would be detected .

Statement

var1.method2();

var2.method2();

var3.method2();

var4.method2();

var5.method2();

var1.method3();

var2.method3();

var3.method3();

var6.method3();

((Lamp)var6).method1();

((Can)var1).method1();

((Can)var1).method2();

((Bear)var1).method3();

((Clock)var1).method1();

((Clock)var4).method2();

Output

4 of 12

5. Collections Programming
Write a method called recordDate that information about a date between two people. For each person, the map records
an ordered list of people that person has dated. For example, the map might record these entries for two people

 Michael => [Ashley, Samantha, Joshua, Brittany, Amanda, Amanda]
 Amanda => [Michael, Daniel, Michael]

The dates are listed in reverse order. The list for Michael indicates that he most recently dated Ashley and before that
Samantha and before that Joshua, and so on. Notice that he has dated Amanda twice. The list for Amanda indicates that
she most recently dated Michael and before that Daniel and before that Michael. All names are stored as string values.

The method takes three parameters: the map, the name of the first person, and the name of the second person. It should
record the date for each person and should return what date number this is (1 for a first date, 2 for a second date, and so
on). Given the entries above, if we make this call:

 int n = recordDate(dates, "Michael", "Amanda");

The method would record the new date at the front of each list:

 Michael => [Amanda, Ashley, Samantha, Joshua, Brittany, Amanda, Amanda]
 Amanda => [Michael, Michael, Daniel, Michael]

The method would return the value 3 indicating that this is the third date for this pair of people. When someone is first
added to the map, you should construct a LinkedList object (we use LinkedList instead of ArrayList because it has
fast insertion at the front of the list).

5 of 12

6. Comparable
Define a class Donation that represents donations made to organizations. Each Donation object keeps track of an
amount, the organization the donation was made to and a boolean to indicate whether or not the donation was tax-
deductible. Your class must have the following public methods:

Member Description
public Donation(organization, amount,
 isDeductible)

constructs a donation object with the given organization,
amount and tax-deductible status

public String toString() returns a String representation of the donation

Your constructor should throw an IllegalArgumentException if the amount passed to it is negative or 0.

The toString method returns a String composed of a dollar sign ($), followed by the amount donated, followed by
a colon and the name of the organization. If the donation is tax-deductible, an asterisk (*) is added to the beginning of
the String. You must exactly reproduce the format of the examples given below.

Make Donation objects comparable to each other using the Comparable<E> interface. Donation objects that
are tax-deductible are considered "less" than donations that are not tax-deductible. In other words, all tax-deductible
donations go before donations that are not tax-deductible. Then, they are sorted by amount in ascending order,
breaking ties by organization in ascending alphabetical order. For example, if the following objects are declared:

Donation uw1 = new Donation("University of Washington", 600.75, true);
Donation uw2 = new Donation("University of Washington", 40, true);
Donation sj = new Donation("Snap Judgment", 30, false);
Donation tal = new Donation("This American Life", 40, true);
Donation mc = new Donation("Microphone Check", 99.99, false);

Printing them in sorted order would result in the following output:
* $40.0: This American Life
* $40.0: University of Washington
* $600.75: University of Washington
$30.0: Snap Judgment
$99.99: Microphone Check

(You may also write on the next page.)

6 of 12

6. Comparable (writing space)

7 of 12

7. Binary Tree Programming
Write a method called printLevel that takes an integer n as a parameter and that prints the values at level n from left to
right. By definition the overall root is at level 1, its children are at level 2, and so on. The table below shows the result of
calling this method on an IntTree variable t storing the following tree.
 +----+
 | 12 |
 +----+
 / \
 +----+ +----+
 | 19 | | 93 |
 +----+ +----+
 / \ \
+----+ +----+ +----+
| 11 | | 14 | | 15 |
+----+ +----+ +----+
	

call	 output	
t.printLevel(1) nodes	at	level	1	=	12	
t.printLevel(2) nodes	at	level	2	=	19	93	
t.printLevel(3) nodes	at	level	3	=	11	14	15	
t.printLevel(42) nodes	at	level	42	=	

Notice that if there are no levels at the level (eg level 42), your method should produce no output after the equals sign.
You must exactly reproduce the format of this output. Your method should throw an IllegalArgumentException if
passed a value for level that is less than 1.

You are writing a public method for a binary tree class defined as follows:
 public class IntTreeNode {
 public int data; // data stored in this node
 public IntTreeNode left; // reference to left subtree
 public IntTreeNode right; // reference to right subtree

 <constructors>
 }

 public class IntTree {
 private IntTreeNode overallRoot;

 <methods>
 }
You are writing a method that will become part of the IntTree class. You may define private helper methods to solve
this problem, but otherwise you may not call any other methods of the class. You may not construct any extra data
structures to solve this problem.

(Write your answer on the next page.)

8 of 12

8. Binary Tree Programming (writing space)

8. Binary Tree Programming
Write a method called removeRightLeaves that removes right leaves from the
tree until it has no right leaves remaining. A right leaf is a leaf that is a
right child of some other node. For example, suppose a variable t stores a
reference to the following tree:

 Before call
 +----+
 | 13 |
 +----+
 / \
 +----+ +----+
 | 48 | | 17 |
 +----+ +----+
 / \ / \
 +----+ +----+ +----+ +----+
 | 82 | | 34 | | 12 | | 23 |
 +----+ +----+ +----+ +----+
 / \ \ \ \
+----+ +----+ +----+ +----+ +----+
| 65 | | 10 | | 22 | | 15 | | 12 |
+----+ +----+ +----+ +----+ +----+

The right leaves of this tree are the nodes that store 10, 22, 15 and 12. If
we make the call t.removeRightLeaves(); then these four nodes will be removed.
But notice that once these four nodes have been removed, we are left with new
right leaves storing 34 and 23. These also are removed leaving the tree below.

 After call
 +----+
 | 13 |
 +----+
 / \
 +----+ +----+
 | 48 | | 17 |
 +----+ +----+
 / /
 +----+ +----+
 | 82 | | 12 |
 +----+ +----+
 /
 +----+
 | 65 |
 +----+

The overallRoot would never be a right leaf because it has no parent.

10 of 12

8. Binary Tree Programming (writing space)

9. Linked List Programming

Write a method called rotate3 that rotates each successive sequence of 3
values in a list of integers (moving the first value to the last position).
For example, suppose that a variable called list stores the following sequence
of values:

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

and we make the following call:

list.rotate3();

Afterwards the list should store the following sequence of values:

[2, 3, 1, 5, 6, 4, 8, 9, 7, 11, 12, 10, 14, 15, 13]

The first sequence of 3 values (1, 2, 3) has been rotated to be (2, 3, 1). The
second sequence of 3 values (4, 5, 6) has been rotated to be (5, 6, 4). And so
on. If the list has extra values that are not part of a sequence of 3, those
values are unchanged. For example, if the list had instead stored:

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]

The result would have been:

[2, 3, 1, 5, 6, 4, 8, 9, 7, 11, 12, 10, 14, 15, 13, 16, 17]

Notice that the values (16, 17) are unchanged in position because they were
not part of a sequence of three values.

These examples purposely used sequential integers to make the rearrangement
clear, but you should not expect that the list will store sequential integers.

Your method should not change the list if it has fewer than three values.

12 of 12

9. Linked List Programming (writing space)

