Building Java Programs

Inner classes, generics, abstract classes

reading: 9.6, 15.4, 16.4-16.5







 —
A tree set

e Our searchTree class is essentially a set.
operations: add, remove, contains, size, isEmpty
similar to the Treeset class in java.util

e Let's actually turn it into a full set implementation.
step 1: create ADT interface; implement it
step 2: get rid of separate node class file

step 3: make tree capable of storing overallRoot
any type of data (not just int) (k)

(&) ()
We won't rebalance the tree, take a
data structures class to learn how! (c) (@) (m) (v)



Recall: ADTs (11.1)

* abstract data type (ADT): A specification of a collection
of data and the operations that can be performed on it.

Describes what a collection does, not how it does it.

e Java's collection framework describes ADTs with interfaces:
Collection, Deque, List, Map, Queue, Set, SortedMap

* An ADT can be implemented in multiple ways by classes:
Arrayhistahd inkedliist implement List
HashSet and TreeSet implement set
LinkedList , ArrayDeque, etc. implement Queue



 —
Inner classes

To get rid of our separate node file, we use an inner class.

e inner class: A class defined inside of another class.
inner classes are hidden from other classes (encapsulated)
inner objects can access/modify the fields of the outer object

Instance of
EnclosingClass Instance of

InnerClass



 —
Inner class syntax

// outer (enclosing) class
public class name {

Lilbdnneratnestedy iolagss
private class name ({

}

Only this file can see the inner class or make objects of it.

Each inner object is associated with the outer object that
created it, so it can access/modify that outer object's
methods/fields.

- If necessary, can refer to outer object as OuterClassName. this



s OOy

Recall: Type Parameters

ArrayList<Type> name = new ArrayList<Type> () ;

e When constructing a java.util.ArrayList, you specify
the type of elements it will contain in < and >.

ArrayList accepts a type parameter; it is a generic class.

ArraylList<String> names = new ArrayList<String>();
names.add ("Marty Stepp")

names.add ("Helene Martin"):;
names.add (42); // compiler error



s OOy

/ : y
Implementing generics

// a parameterized (generic) class
public class name<Type> {

}

Forces any client that constructs your object to supply a type.

- Don't write an actual type such as String; the client does that.
- Instead, write a type variable name such as E (for "element"”) or T
(for "type").

« You can require multiple type parameters separated by commas.

The rest of your class's code can refer to that type by name.



s OOy

Generics and inner classes

public class Foo<E> {
private class Inner<E> {...} ey e
pPriwvatevwe o paniaaa // correct

If an outer class declares a type parameter,
inner classes can also use that type parameter.

The inner class should NOT redeclare the type parameter.

« (If you do, it will create a second type param with the same
name.)



/ —

Issues with generic objects

public class TreeSet<E> {

public void example (E valuel, E value2) {

// BAD: valuel == value?2 (they are objects)
// GOOD: wvaluel.equals(value2)

// BAD: wvaluel < value?Z
// GOOD: wvaluel.compareTo (value2) < 0

» When testing objects of type E for equality, must use equals

» When testing objects of type E for < or >, must use compareTo
- Problem: By default, compareTo doesn't compile! What's wrong!

10



// n
Type constraints

// a parameterized (generic) class
public class name<Type extends Class/Interface> {

}

A type constraint forces the client to supply a type that is a
subclass of a given superclass or implements a given interface.

« Then the rest of your code can assume that the type has all of the
methods in that superclass / interface and can call them.

171



NI oS

/ = =
Generic set interface

ivwRepresenta sk suniangaliesy
public interface Set<E> {
publaciwoid add B valuc):
publrc boolcan W sEnpEyl):
public boolean contains (E value);
public void remove (E value);
YRR G M n s iAo L I

}

public class TreeSet<E extends Comparable<E>>
implements Set<E> ({

12



Our list classes

* We have implemented the following two list collection

classes: _
index| 0 | 1] 2
o ArrayIntList value 142 1-3117
S e R R e data | next data | next data | next
front —| 42 -3 17

» Problems:
« We should be able to treat them the same way in client code.

Linked list carries around a clunky extra node class.

They can store only int elements, not any type of value.

Some methods are implemented the same way

(redundancy).

It is inefficient to get or remove each element of a linked list.

13



/ m
Generics and arrays (15.4)

public class Foo<T> {
private T myField; Lok

public void methodl (T param) ({

myField = new T(); N e
BN g e // error
myField = param; ol

T[] a2 = (T[]) (new Object[10]); // ok

You cannot create objects or arrays of a parameterized type.

You can create variables of that type, accept them as

parameters, return them, or create arrays by casting from
Slomi= o



 —
Common code

* Notice that some of the methods are implemented the
same way in both the array and linked list classes.

add (value)
containg

1sEmpty

* Should we change our interface to a class? Why / why not?
How can we capture this common behavior?

15



s

Abstract classes (9.6)

* abstract class: A hybrid between an interface and a class.

defines a superclass type that can contain method declarations
(like an interface) and/or method bodies (like a class)

like interfaces, abstract classes that cannot be instantiated
(cannot use new to create any objects of their type)

* What goes in an abstract class?

implementation of common state and behavior that will be
inherited by subclasses (parent class role)

declare generic behaviors that subclasses must implement
(interface role)

16



e

‘Abstract class syntax

e elarinie an b st aet el aa s
public abstract class name {

Ilodeclaring anvabstract method
// (any subclass must implement it)
public abstract type name (parameters) ;

}

e A class can be abstract even if it has no abstract methods

* You can create variables (but not objects) of the abstract
type

* Exercise: Introduce an abstract class into the list hierarchy.

17



s OOy

Abstract and interfaces

* Normal classes that claim to implement an interface must
implement all methods of that interface:

public class Empty implements IntList {} // error

* Abstract classes can claim to implement an interface
without writing its methods; subclasses must implement
the methods.

public abstract class Empty implements IntList {} //
ok

public class Child extends Empty {} // error

18



/”"-‘

An abstract list class

// Superclass with common code for a list of integers.
public abstract class AbstractIntlList implements IntList {
eI eA s e e W B e e e M A Y e
add(size (), value);

}

public boolean contains (int value) {
return indexOf (value) >= 0;

}

public boolean isEmpty () {
return size() == 0;

}

public class ArrayIntList extends AbstractIntList { ...
public class LinkedIntlList extends AbstractIntList { ...

19



Abstract class vs. interface

* Why do both interfaces and abstract classes exist in Java?

An abstract class can do everything an interface can do and
more.

So why would someone ever use an interface?

* Answer: Java has single inheritance.
can extend only one superclass
can implement many interfaces

Having interfaces allows a class to be part of a hierarchy
(polymorphism) without using up its inheritance relationship.

20



Our list classes

* We have implemented the following two list collection

classes: -
index| 0 | 1] 2
o ArrayIntList value 142 1-3117
¢ TinkedIntliist data | next data | next data | next
front —| 42 -3 17

» Problems:
« We should be able to treat them the same way in client code.

Linked list carries around a clunky extra node class.

They can store only int elements, not any type of value.
Some of their methods are implemented the same way

(redundancy).

It is inefficient to get or remove elements of a linked list.

21



