Building Java Programs

Inheritance and Polymorphism
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Input and output streams

 stream: an abstraction of a source or target of data
8-bit bytes flow to (output) and from (input) streams

* can represent many data sources:

| Network

files on hard disk

another computer on network Deﬁi\ﬂ Bobs Shins
Webpage 85222271111111111111111
input device (keyboard, mouse, etc.) s

* represented by java.io classes
InputStream
GUuEpiEsSbrean



Recall: inheritance

* inheritance: Forming new classes based on existing ones.
a way to share/reuse code between two or more classes

superclass: Parent class being extended.

subclass: Child class that inherits behavior from superclass.
- gets a copy of every field and method from superclass

is-a relationship: Each object of the subclass also "is a(n)"
object of the superclass and can be treated as one.

Employee
20-page manual
FAN

Lawyer Secretary Marketer
2-page manual 1-page manual 3-page manual

T

LegalSecretary
1-page manual
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Streams and inheritance

e input streams extend common superclass InputStream;

output streams extend common superclass OutputStream

» guarantees that all sources of data have the same methods
» provides minimal ability to read/write one byte at a time

InputStream

read(): int
close()

|

|

AudiolnputStream

ByteArraylnputStream

FilelnputStream

FilterinputStream ObjectinputStream

]

BufferedinputStream

DatalnputStream

InflaterinputStream

LineNumberlinputStream

PushbackinputStream

T

GZIPInputStream

ZiplnputStream

JarlnputStream




Inheritance syntax

public class name extends superclass {

public class Lawyer extends Employee ({

}

* override: To replace a superclass's method by writing a
new version of that method in a subclass.

public class Lawyer extends Employee {
// overrides getSalary method in Employee class;
// give Lawyers a $5K raise
public double getSalary () {
return 55000.00;



J—
super keyword

e Subclasses can call inherited behavior with super

super . method (parameters)
super (parameters) ;

public class Lawyer extends Employee {
publicihiawve rbintiyvedrs)y
super (years); // calls Employee constructor

}

// give Lawyers a $5K raise

public double getSalary () {
double baseSalary = super.getSalary();
return baseSalary + 5000.00;

}

Lawyers now always make $5K more than Employees.



I/O and exceptions

* exception: An object representing an error.

» checked exception: One that must be
handled for the program to compile.

e Many I/O tasks throw exceptions.
» Why?

e When you perform I/0O, you must either:
» also throw that exception yourself
» catch (handle) the exception
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// n n
Throwing an exception

public type name (params) throws type {

* throws clause: Keywords on a method's header that state
that it may generate an exception.

Example:

public void processFile(String filename)
throws FileNotFoundException ({

"I hereby announce that this method might throw an
exception, and I accept the consequences if it happens.”
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Catching an exception

Crv
statement(s);
} catch (type name) {
code to handle the exception

}

The try code executes. If the given exception occurs, the try
block stops running; it jumps to the catch block and runs

that.

try {
Scanner in = new Scanner (new File(filename)) ;
systemsontiperntin tinpil snexiune ) )

} catch (FileNotFoundException e) {
sy stemsontaperynyln W Evleawasnof aromnd ety

}
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Exception inheritance

* Exceptions extend from a common superclass Exception

Exception
ClassNotFoundException DataFormatException IOException NoSuchMethodException RuntimeException SQLException
llk FAY

I I |

FileNotFoundException MalformedURLException SocketException

ArithmeticException ClassCastException ConcurrentModificationException EmptyStackException
llegalArgumeniException llegalStateException IndexOutOfBoundsException NoSuchElementException
NullPointerException SecurityException UnsupportedOperationException

11
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Dealing with an exception

* All exception objects have these methods:

Method Description
public String getMessage () text describing the error
publtic String toSErang () a stack trace of the line

numbers where error occurred
getCause (), getStackTrace(), other methods
printStackTrace ()

e Some reasonable ways to handle an exception:
try again; re-prompt user; print a nice error message;
quit the program; do nothing (!)
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/ n o
Inheritance and exceptions

* You can catch a general exception to handle any subclass:

e
Scanner 1nput = new Scanner (new File("foo"))
Shissh s ot ens s bl B el i o bl g =D Gl S Y T

} catch (Exception e) {

S ey S U e S A A A e S e P A e

}

e Similarly, you can state that a method throws any
exception:

public void foo () throws Exception ({

Are there any disadvantages of doing so?

13



The class Object

* The class 0bject forms the root of the
overall inheritance tree of all Java classes.
Every class is implicitly a subclass of Object

* The Object class defines several methods
that become part of every class you write.
For example:

eI edinRe s ma st o s o S s a N ao R Y
Returns a text representation of the object,
usually so that it can be printed.

Object

equals
finalize
getClass
hashCode
notify
notifyAll
toString

wait

Point

XYy

distance
getx

getY
setLocation
toString
translate
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Object methods

method

description

protected Object clone ()

creates a copy of the object

public boolean equals (Object 0)

returns whether two objects
have the same state

protected void finalize ()

used for garbage collection

public Class<?> getClass ()

info about the object's type

public 1int hashCode ()

a code suitable for putting this
object into a hash collection

public String toString ()

text representation of object

public void notify ()
public void notifyAll ()
Buiire o dh watt
publiacivordiwazrt i)

methods related to
concurrency and locking (take
a data structures course!)
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Using the Object class

* You can store any object in a variable of type Object.

S e T L e A A
Object 02 = "hello there";

* You can write methods that accept an Object parameter.

public void checkNotNull (Object o) {
Sl B o M A WL
throw new IllegalArgumentException ();

}

* You can make arrays or collections of 0Objects.

Object[] a = new Object[5];
a v =aihverilione

all] = new Random() ;
SO gic e b

new ArrdavhiistaObycor =y
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Recall: comparing objects

e The == operator does not work well with objects.

It compares references, not objects' state.
It produces t rue only when you compare an object to itself.

et NE T O s e S e O
Point p2 = new Point (5, 3);

POINE DS D23 . <[5 o
o e e

Lilhvpilis s mdv e b e

L e e p2 .| x| 5 v| 3
Anilvear e ////’ i

P e g s p3 =
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Default equals method

* The Object class's equals implementation is very simple:

by 2 AR A e o e e

public boolean equals (Object o) {
return this == o;

}

e However:

When we have used equals with various objects, it didn't behave like
= Whynot? ¢ (st el e ts ot |

The Java API documentation for equals is elaborate. Why?

18
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Implementing equals

public boolean equals (Object nhame) ({
statement(s) that return a boolean value ;

The parameter to equals must be of type Object.

Having an Ob-ject parameter means any object can be passed.

- If we don't know what type it is, how can we compare it?

19
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Casting references

Sloi=telin ol el i D ellialin ol BT

Object 02 = "hello there";

LD oanE ) ol s ancliate o oy // ok
intdeniei St ng) G2 lengbh s ok
Point p = (Point) ol;

int x = p.getX(); ok

e Casting references is different than casting primitives.
Really casting an 0bject reference into a Point reference.

Doesn't actually change the object that is referred to.
Tells the compiler to assume that o1 refers to a Point object.
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// .
The instanceof keyword

if (variable instanceof type) {

statement(s);
}
expression result
* Asks if a variable refers = Mhraliceor PoiRf e
to an object of 3 given type. b e R R R true
Used as a boolean test. P LusTancect oint T
p instanceof String false
String s = "hello"; p instanceof Object true
Point o = pow Porpk () s instanceof Object true
null instanceof String| false
null instanceof Object | false

21
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equals method for Points

// Returns whether o refers to a Point object with
v e e B e e e i )

pablve boolean cgualtsiObyeat o) i

1f (o instanceof Point) {
e o i ol alsioimilisio i elo o slie = e

PodnEvcEher 2t Poyn Yo
return x == other.x && y == other.y;
} else {

e L e O e N e e e R

return false;
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More about equals

» Equality is expected to be reflexive, symmetric, and transitive:

a.equals (a) is true for every object a
a.equals (b) €2 b.equals(a)
(a.equals (b) && b.equals(c)) €& a.equals(c)

* No non-null object is equal to null:

a.equals (null) is false for every object a

e Two sets are equal if they contain the same elements:

Set<String> setl = new HashSet<String>();

Set<String> set2 = new TreeSet<String>();

tor ot rangys o lthaalyew are s vorth ety g
e aelaafeeie set2.add(s);

}
System.out.println (setl.equals (set2)); e
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Polymorphism



Polymorphism

o polymorphism: Ability for the same code to be used with different
types of objects and behave differently with each.

» A variable or parameter of type T can refer to any subclass of T.

Employee ed = new Lawyer () ;
Object otto = new Secretary();

When a method is called on ed, it behaves as a Lawyer.

You can call any Employee methods on ed.
You can call any object methods on otto.

« You can not call any Lawyer-only methods on ed (e.qg. sue).
You can not call any Employee methods on otto (e.g. getHours).

25
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Polymorphism examples

* You can use the object's extra functionality by casting.

Employee ed = new Lawyer():;

ed.getVacationDays () ; Ivaei

ed.sue() ; // compiler error
((Lawyer) ed).sue(); // ok

* You can't cast an object into something that it is not.

Object otto = new Secretary();

Syiabemyout iprinbtlinlet ol Lo ring i)y Lok
otto.getVacationDays () ; // compiler error
( (Employee) otto).getVacationDays (); // ok

((Lawyer) otto) .sue(); R Ae e RO T
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"Polymorphism mystery"

* Figure out the output from all methods of these classes:

public class Snow {
publ e word methodl ()
Svstemioutiprimbln: s nowonhy:

}

public void method3 () {
Svstemioubtiprinbin(onow 3 ) ;

}
}

public class Rain extends Snow {
publrc vord methodl ()
SWs bemvoutaprrmbln: R e maiivg::
}

public void method2 () {
Svstemiountaprintln (Rapma D
}

27
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"Polymorphism mystery”

public class Sleet extends Snow {
public void method2 () {
svistemyoubypran blrpeoei iy
super.method2 () ;
method3 () ;

}

babltewwarchnerhod S
A AR N G A S AN PN A AN o e e S i
}

}

public class Fog extends Sleet ({
publrc vord methodl ()
Syietemaeon i rrn bl s

}

public void method3 () {
Sy sbemyoubtiyprinbEn (B Rog 3%

}

28



Technique 1: diagram

* Diagram the classes from top (superclass) to bottom.

Snow
method?2
method3
+
Rain Sleet
method1 method?2
method?2 method3
(method3) T
Fog
method1
(method2)
method3




Technique 2: table

method Snow Rain Sleet Fog
methodl Rain:l Pogil
methioa2 e now 2 R 2 Sleet 2 Sleet 2
SN OW: 2 STIOW 2
method3 () method3 ()
method3 | Snow 3 Snow 3 Sleet 3 Bot)

Italic - inherited behavior
Bold - dynamic method call

30
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Mystery problem, no cast

Snow var3 = new Rain /() ;
Varr e aiaivi s // What's the output?

» If the problem does not have any casting, then:

Look at the variable's type.
If that type does not have the method: ERROR.

Execute the method, behaving like the object's type.
(The variable type no longer matters in this step.)

G4
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Example 1

* What is the output of the following call?

variable
Snow varl = new Sleet () ; Snow
Vs b s b V= i al o e W A
method?2
method3
e Answer: s .
object
Rai Sleet
Sleet 2 amn i
SHOW 2 method1 method?2
Sleet 3 method?2 method3
(method3) T
Fog
method1
(method2)
method3

B
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Example 2

* What is the output of the following call?

Snow varZ2 = new Rain () ;

Nl V= a0 e W A

e Answer:

ERROR
(because snow does not
have a methodl)

variable
Snow
method?2
method3
. >
object
Rain Sleet
method1 method?2
method?2 method3
(method3) T
Fog
method1
(method2)

method3

53
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Mystery problem with cast

Snow var?2 = new Rain () ;
((Sleet) var2) .method2 () ; // What's the output?

» If the problem does have a type cast, then:

Look at the cast type.
If that type does not have the method: ERROR.

Make sure the object's type is the cast type or is a subclass of the cast
type. If not: ERROR. (No sideways casts!)

Execute the method, behaving like the object's type.
(The variable / cast types no longer matter in this step.)

34
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Example 3

* What is the output of the following call?

Snow var?

(ERaI ) ar2yvmethodilig

e Answer:

Rain 1

variable
= new Rain(); Snow
method?2
method3
cast 3
object
Rain Sleet
method1 method?2
method?2 method3
(method3) T
Fog
method1
(method2)

method3

5
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Example 4

* What is the output of the following call?

variable
Snow varZ2 = new Rain () ; Snow
((Sleet) var?2) .method2 () ;
method2
method3
e Answer: : 4
object cast
Rain Sleet
ERROR
(because the object's method1 method2
type, Rain, cannot method2 method3
be cast into Sleet) (methoa3) T
Fog
method1
(method2)
method3
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