
Building Java Programs

Inheritance and Polymorphism

3

Input and output streams
� stream: an abstraction of a source or target of data

� 8-bit bytes flow to (output) and from (input) streams

� can represent many data sources:
� files on hard disk
� another computer on network
� web page
� input device (keyboard, mouse, etc.)

� represented by java.io classes
� InputStream

� OutputStream

4

Recall: inheritance
� inheritance: Forming new classes based on existing ones.

� a way to share/reuse code between two or more classes

� superclass: Parent class being extended.
� subclass: Child class that inherits behavior from superclass.

� gets a copy of every field and method from superclass

� is-a relationship: Each object of the subclass also "is a(n)"
object of the superclass and can be treated as one.

5

Streams and inheritance
� input streams extend common superclass InputStream;

output streams extend common superclass OutputStream
� guarantees that all sources of data have the same methods
� provides minimal ability to read/write one byte at a time

6

Inheritance syntax
public class name extends superclass {

public class Lawyer extends Employee {
...

}

� override: To replace a superclass's method by writing a
new version of that method in a subclass.

public class Lawyer extends Employee {
// overrides getSalary method in Employee class;
// give Lawyers a $5K raise
public double getSalary() {

return 55000.00;
}

}

7

super keyword
� Subclasses can call inherited behavior with super

super.method(parameters)
super(parameters);

public class Lawyer extends Employee {
public Lawyer(int years) {

super(years); // calls Employee constructor
}

// give Lawyers a $5K raise
public double getSalary() {

double baseSalary = super.getSalary();
return baseSalary + 5000.00;

}
}

� Lawyers now always make $5K more than Employees.

8

I/O and exceptions
� exception: An object representing an error.

� checked exception: One that must be
handled for the program to compile.

� Many I/O tasks throw exceptions.
� Why?

� When you perform I/O, you must either:
� also throw that exception yourself
� catch (handle) the exception

9

Throwing an exception
public type name(params) throws type {

� throws clause: Keywords on a method's header that state
that it may generate an exception.

� Example:
public void processFile(String filename)

throws FileNotFoundException {

"I hereby announce that this method might throw an
exception, and I accept the consequences if it happens."

10

Catching an exception
try {

statement(s);
} catch (type name) {

code to handle the exception
}

� The try code executes. If the given exception occurs, the try
block stops running; it jumps to the catch block and runs
that.

try {
Scanner in = new Scanner(new File(filename));
System.out.println(input.nextLine());

} catch (FileNotFoundException e) {
System.out.println("File was not found.");

}

11

Exception inheritance
� Exceptions extend from a common superclass Exception

12

Dealing with an exception
� All exception objects have these methods:

� Some reasonable ways to handle an exception:
� try again; re-prompt user; print a nice error message;

quit the program; do nothing (!)

Method Description
public String getMessage() text describing the error

public String toString() a stack trace of the line
numbers where error occurred

getCause(), getStackTrace(),
printStackTrace()

other methods

13

Inheritance and exceptions
� You can catch a general exception to handle any subclass:

try {
Scanner input = new Scanner(new File("foo"));
System.out.println(input.nextLine());

} catch (Exception e) {
System.out.println("File was not found.");

}

� Similarly, you can state that a method throws any
exception:
public void foo() throws Exception { ...

� Are there any disadvantages of doing so?

14

The class Object
� The class Object forms the root of the

overall inheritance tree of all Java classes.
� Every class is implicitly a subclass of Object

� The Object class defines several methods
that become part of every class you write.
For example:

� public String toString()
Returns a text representation of the object,
usually so that it can be printed.

15

Object methods
method description

protected Object clone() creates a copy of the object
public boolean equals(Object o) returns whether two objects

have the same state
protected void finalize() used for garbage collection
public Class<?> getClass() info about the object's type
public int hashCode() a code suitable for putting this

object into a hash collection
public String toString() text representation of object
public void notify()
public void notifyAll()
public void wait()
public void wait(...)

methods related to
concurrency and locking (take
a data structures course!)

16

Using the Object class
� You can store any object in a variable of type Object.

Object o1 = new Point(5, -3);
Object o2 = "hello there";

� You can write methods that accept an Object parameter.
public void checkNotNull(Object o) {

if (o != null) {
throw new IllegalArgumentException();

}

� You can make arrays or collections of Objects.
Object[] a = new Object[5];
a[0] = "hello";
a[1] = new Random();
List<Object> list = new ArrayList<Object>();

17

Recall: comparing objects
� The == operator does not work well with objects.

� It compares references, not objects' state.
� It produces true only when you compare an object to itself.

Point p1 = new Point(5, 3);
Point p2 = new Point(5, 3);
Point p3 = p2;

// p1 == p2 is false;
// p1 == p3 is false;
// p2 == p3 is true

// p1.equals(p2)?
// p2.equals(p3)?

...

x 5 y 3p1

p2
...

x 5 y 3

p3

18

Default equals method
� The Object class's equals implementation is very simple:

public class Object {
...
public boolean equals(Object o) {

return this == o;
}

}

� However:
� When we have used equals with various objects, it didn't behave like
== . Why not? if (str1.equals(str2)) { ...

� The Java API documentation for equals is elaborate. Why?

19

Implementing equals
public boolean equals(Object name) {

statement(s) that return a boolean value ;

}

� The parameter to equals must be of type Object.
� Having an Object parameter means any object can be passed.

� If we don't know what type it is, how can we compare it?

20

Casting references
Object o1 = new Point(5, -3);
Object o2 = "hello there";

((Point) o1).translate(6, 2); // ok
int len = ((String) o2).length(); // ok
Point p = (Point) o1;
int x = p.getX(); // ok

� Casting references is different than casting primitives.
� Really casting an Object reference into a Point reference.
� Doesn't actually change the object that is referred to.
� Tells the compiler to assume that o1 refers to a Point object.

21

The instanceof keyword
if (variable instanceof type) {

statement(s);
}

� Asks if a variable refers
to an object of a given type.
� Used as a boolean test.

String s = "hello";
Point p = new Point();

expression result
s instanceof Point false

s instanceof String true

p instanceof Point true

p instanceof String false

p instanceof Object true

s instanceof Object true

null instanceof String false

null instanceof Object false

22

equals method for Points
// Returns whether o refers to a Point object with
// the same (x, y) coordinates as this Point.
public boolean equals(Object o) {

if (o instanceof Point) {
// o is a Point; cast and compare it
Point other = (Point) o;
return x == other.x && y == other.y;

} else {
// o is not a Point; cannot be equal
return false;

}
}

23

More about equals
� Equality is expected to be reflexive, symmetric, and transitive:

a.equals(a) is true for every object a
a.equals(b)↔ b.equals(a)

(a.equals(b) && b.equals(c))↔ a.equals(c)

� No non-null object is equal to null:
a.equals(null) is false for every object a

� Two sets are equal if they contain the same elements:
Set<String> set1 = new HashSet<String>();
Set<String> set2 = new TreeSet<String>();
for (String s : "hi how are you".split(" ")) {

set1.add(s); set2.add(s);
}
System.out.println(set1.equals(set2)); // true

24

Polymorphism

25

Polymorphism
� polymorphism: Ability for the same code to be used with different

types of objects and behave differently with each.

� A variable or parameter of type T can refer to any subclass of T.
Employee ed = new Lawyer();
Object otto = new Secretary();

� When a method is called on ed, it behaves as a Lawyer.
� You can call any Employeemethods on ed.

You can call any Object methods on otto.
� You can not call any Lawyer-only methods on ed (e.g. sue).

You can not call any Employee methods on otto (e.g. getHours).

26

Polymorphism examples
� You can use the object's extra functionality by casting.

Employee ed = new Lawyer();
ed.getVacationDays(); // ok
ed.sue(); // compiler error
((Lawyer) ed).sue(); // ok

� You can't cast an object into something that it is not.
Object otto = new Secretary();
System.out.println(otto.toString()); // ok
otto.getVacationDays(); // compiler error
((Employee) otto).getVacationDays(); // ok
((Lawyer) otto).sue(); // runtime error

27

"Polymorphism mystery"
� Figure out the output from all methods of these classes:

public class Snow {
public void method2() {

System.out.println("Snow 2");
}
public void method3() {

System.out.println("Snow 3");
}

}

public class Rain extends Snow {
public void method1() {

System.out.println("Rain 1");
}
public void method2() {

System.out.println("Rain 2");
}

}

28

"Polymorphism mystery"
public class Sleet extends Snow {

public void method2() {
System.out.println("Sleet 2");
super.method2();
method3();

}
public void method3() {

System.out.println("Sleet 3");
}

}

public class Fog extends Sleet {
public void method1() {

System.out.println("Fog 1");
}
public void method3() {

System.out.println("Fog 3");
}

}

29

Technique 1: diagram
� Diagram the classes from top (superclass) to bottom.

Snow

method2
method3

method1
method2
(method3)

Rain

method1
(method2)
method3

Fog

method2
method3

Sleet

30

Technique 2: table
method Snow Rain Sleet Fog
method1

method2

method3

Italic - inherited behavior
Bold - dynamic method call

method Snow Rain Sleet Fog
method1 Rain 1 Fog 1

method2 Snow 2 Rain 2 Sleet 2

Snow 2

method3()

Sleet 2

Snow 2

method3()

method3 Snow 3 Snow 3 Sleet 3 Fog 3

31

Mystery problem, no cast
Snow var3 = new Rain();
var3.method2(); // What's the output?

� If the problem does not have any casting, then:
1. Look at the variable's type.

If that type does not have the method: ERROR.

2. Execute the method, behaving like the object's type.
(The variable type no longer matters in this step.)

32

Example 1
� What is the output of the following call?

Snow var1 = new Sleet();
var1.method2();

� Answer:

Sleet 2
Snow 2
Sleet 3

Snow

method2
method3

method1
method2
(method3)

Rain

method1
(method2)
method3

Fog

method2
method3

Sleet
object

variable

33

Example 2
� What is the output of the following call?

Snow var2 = new Rain();
var2.method1();

� Answer:

ERROR
(because Snow does not
have a method1)

Snow

method2
method3

method1
method2
(method3)

Rain

method1
(method2)
method3

Fog

method2
method3

Sleet

variable

object

34

Mystery problem with cast
Snow var2 = new Rain();
((Sleet) var2).method2(); // What's the output?

� If the problem does have a type cast, then:
1. Look at the cast type.

If that type does not have the method: ERROR.

2. Make sure the object's type is the cast type or is a subclass of the cast
type. If not: ERROR. (No sideways casts!)

3. Execute the method, behaving like the object's type.
(The variable / cast types no longer matter in this step.)

35

Example 3
� What is the output of the following call?

Snow var2 = new Rain();
((Rain) var2).method1();

� Answer:

Rain 1

Snow

method2
method3

method1
method2
(method3)

Rain

method1
(method2)
method3

Fog

method2
method3

Sleet

variable

object
cast

36

Example 4
� What is the output of the following call?

Snow var2 = new Rain();
((Sleet) var2).method2();

� Answer:

ERROR
(because the object's
type, Rain, cannot
be cast into Sleet)

Snow

method2
method3

method1
method2
(method3)

Rain

method1
(method2)
method3

Fog

method2
method3

Sleet
object cast

variable

