Building Java Programs

Inheritance and Polymorphism

—

Input and output streams

 stream: an abstraction of a source or target of data
8-bit bytes flow to (output) and from (input) streams

* can represent many data sources:

| Network

files on hard disk

another computer on network Deﬁi\ﬂ Bobs Shins
Webpage 85222271111111111111111
input device (keyboard, mouse, etc.) s

* represented by java.io classes
InputStream
GUuEpiEsSbrean

Recall: inheritance

* inheritance: Forming new classes based on existing ones.
a way to share/reuse code between two or more classes

superclass: Parent class being extended.

subclass: Child class that inherits behavior from superclass.
- gets a copy of every field and method from superclass

is-a relationship: Each object of the subclass also "is a(n)"
object of the superclass and can be treated as one.

Employee
20-page manual
FAN

Lawyer Secretary Marketer
2-page manual 1-page manual 3-page manual

T

LegalSecretary
1-page manual

/ e

Streams and inheritance

e input streams extend common superclass InputStream;

output streams extend common superclass OutputStream

» guarantees that all sources of data have the same methods
» provides minimal ability to read/write one byte at a time

InputStream

read(): int
close()

|

|

AudiolnputStream

ByteArraylnputStream

FilelnputStream

FilterinputStream ObjectinputStream

]

BufferedinputStream

DatalnputStream

InflaterinputStream

LineNumberlinputStream

PushbackinputStream

T

GZIPInputStream

ZiplnputStream

JarlnputStream

Inheritance syntax

public class name extends superclass {

public class Lawyer extends Employee ({

}

* override: To replace a superclass's method by writing a
new version of that method in a subclass.

public class Lawyer extends Employee {
// overrides getSalary method in Employee class;
// give Lawyers a $5K raise
public double getSalary () {
return 55000.00;

J—
super keyword

e Subclasses can call inherited behavior with super

super . method (parameters)
super (parameters) ;

public class Lawyer extends Employee {
publicihiawve rbintiyvedrs)y
super (years); // calls Employee constructor

}

// give Lawyers a $5K raise

public double getSalary () {
double baseSalary = super.getSalary();
return baseSalary + 5000.00;

}

Lawyers now always make $5K more than Employees.

I/O and exceptions

* exception: An object representing an error.

» checked exception: One that must be
handled for the program to compile.

e Many I/O tasks throw exceptions.
» Why?

e When you perform I/0O, you must either:
» also throw that exception yourself
» catch (handle) the exception

—

// n n
Throwing an exception

public type name (params) throws type {

* throws clause: Keywords on a method's header that state
that it may generate an exception.

Example:

public void processFile(String filename)
throws FileNotFoundException ({

"I hereby announce that this method might throw an
exception, and I accept the consequences if it happens.”

—

Catching an exception

Crv
statement(s);
} catch (type name) {
code to handle the exception

}

The try code executes. If the given exception occurs, the try
block stops running; it jumps to the catch block and runs

that.

try {
Scanner in = new Scanner (new File(filename)) ;
systemsontiperntin tinpil snexiune))

} catch (FileNotFoundException e) {
sy stemsontaperynyln W Evleawasnof aromnd ety

}

10

/—”“"

/ n o =
Exception inheritance

* Exceptions extend from a common superclass Exception

Exception
ClassNotFoundException DataFormatException IOException NoSuchMethodException RuntimeException SQLException
llk FAY

I I |

FileNotFoundException MalformedURLException SocketException

ArithmeticException ClassCastException ConcurrentModificationException EmptyStackException
llegalArgumeniException llegalStateException IndexOutOfBoundsException NoSuchElementException
NullPointerException SecurityException UnsupportedOperationException

11

—

Dealing with an exception

* All exception objects have these methods:

Method Description
public String getMessage () text describing the error
publtic String toSErang () a stack trace of the line

numbers where error occurred
getCause (), getStackTrace(), other methods
printStackTrace ()

e Some reasonable ways to handle an exception:
try again; re-prompt user; print a nice error message;
quit the program; do nothing (!)

—

/ n o
Inheritance and exceptions

* You can catch a general exception to handle any subclass:

e
Scanner 1nput = new Scanner (new File("foo"))
Shissh s ot ens s bl B el i o bl g =D Gl S Y T

} catch (Exception e) {

S ey S U e S A A A e S e P A e

}

e Similarly, you can state that a method throws any
exception:

public void foo () throws Exception ({

Are there any disadvantages of doing so?

13

The class Object

* The class 0bject forms the root of the
overall inheritance tree of all Java classes.
Every class is implicitly a subclass of Object

* The Object class defines several methods
that become part of every class you write.
For example:

eI edinRe s ma st o s o S s a N ao R Y
Returns a text representation of the object,
usually so that it can be printed.

Object

equals
finalize
getClass
hashCode
notify
notifyAll
toString

wait

Point

XYy

distance
getx

getY
setLocation
toString
translate

14

Object methods

method

description

protected Object clone ()

creates a copy of the object

public boolean equals (Object 0)

returns whether two objects
have the same state

protected void finalize ()

used for garbage collection

public Class<?> getClass ()

info about the object's type

public 1int hashCode ()

a code suitable for putting this
object into a hash collection

public String toString ()

text representation of object

public void notify ()
public void notifyAll ()
Buiire o dh watt
publiacivordiwazrt i)

methods related to
concurrency and locking (take
a data structures course!)

15

Using the Object class

* You can store any object in a variable of type Object.

S e T L e A A
Object 02 = "hello there";

* You can write methods that accept an Object parameter.

public void checkNotNull (Object o) {
Sl B o M A WL
throw new IllegalArgumentException ();

}

* You can make arrays or collections of 0Objects.

Object[] a = new Object[5];
a v =aihverilione

all] = new Random() ;
SO gic e b

new ArrdavhiistaObycor =y

—

Recall: comparing objects

e The == operator does not work well with objects.

It compares references, not objects' state.
It produces t rue only when you compare an object to itself.

et NE T O s e S e O
Point p2 = new Point (5, 3);

POINE DS D23 . <[5 o
o e e

Lilhvpilis s mdv e b e

L e e p2 .| x| 5 v| 3
Anilvear e ////’ i

P e g s p3 =

17

Default equals method

* The Object class's equals implementation is very simple:

by 2 AR A e o e e

public boolean equals (Object o) {
return this == o;

}

e However:

When we have used equals with various objects, it didn't behave like
= Whynot? ¢ (st el e ts ot |

The Java API documentation for equals is elaborate. Why?

18

e :
Implementing equals

public boolean equals (Object nhame) ({
statement(s) that return a boolean value ;

The parameter to equals must be of type Object.

Having an Ob-ject parameter means any object can be passed.

- If we don't know what type it is, how can we compare it?

19

/ m
Casting references

Sloi=telin ol el i D ellialin ol BT

Object 02 = "hello there";

LD oanE) ol s ancliate o oy // ok
intdeniei St ng) G2 lengbh s ok
Point p = (Point) ol;

int x = p.getX(); ok

e Casting references is different than casting primitives.
Really casting an 0bject reference into a Point reference.

Doesn't actually change the object that is referred to.
Tells the compiler to assume that o1 refers to a Point object.

—

// .
The instanceof keyword

if (variable instanceof type) {

statement(s);
}
expression result
* Asks if a variable refers = Mhraliceor PoiRf e
to an object of 3 given type. b e R R R true
Used as a boolean test. P LusTancect oint T
p instanceof String false
String s = "hello"; p instanceof Object true
Point o = pow Porpk () s instanceof Object true
null instanceof String| false
null instanceof Object | false

21

/— ——

equals method for Points

// Returns whether o refers to a Point object with
v e e B e e e i)

pablve boolean cgualtsiObyeat o) i

1f (o instanceof Point) {
e o i ol alsioimilisio i elo o slie = e

PodnEvcEher 2t Poyn Yo
return x == other.x && y == other.y;
} else {

e L e O e N e e e R

return false;

22

More about equals

» Equality is expected to be reflexive, symmetric, and transitive:

a.equals (a) is true for every object a
a.equals (b) €2 b.equals(a)
(a.equals (b) && b.equals(c)) €& a.equals(c)

* No non-null object is equal to null:

a.equals (null) is false for every object a

e Two sets are equal if they contain the same elements:

Set<String> setl = new HashSet<String>();

Set<String> set2 = new TreeSet<String>();

tor ot rangys o lthaalyew are s vorth ety g
e aelaafeeie set2.add(s);

}
System.out.println (setl.equals (set2)); e

23

Polymorphism

Polymorphism

o polymorphism: Ability for the same code to be used with different
types of objects and behave differently with each.

» A variable or parameter of type T can refer to any subclass of T.

Employee ed = new Lawyer () ;
Object otto = new Secretary();

When a method is called on ed, it behaves as a Lawyer.

You can call any Employee methods on ed.
You can call any object methods on otto.

« You can not call any Lawyer-only methods on ed (e.qg. sue).
You can not call any Employee methods on otto (e.g. getHours).

25

—

Polymorphism examples

* You can use the object's extra functionality by casting.

Employee ed = new Lawyer():;

ed.getVacationDays () ; Ivaei

ed.sue() ; // compiler error
((Lawyer) ed).sue(); // ok

* You can't cast an object into something that it is not.

Object otto = new Secretary();

Syiabemyout iprinbtlinlet ol Lo ring i)y Lok
otto.getVacationDays () ; // compiler error
((Employee) otto).getVacationDays (); // ok

((Lawyer) otto) .sue(); R Ae e RO T

——

"Polymorphism mystery"

* Figure out the output from all methods of these classes:

public class Snow {
publ e word methodl ()
Svstemioutiprimbln: s nowonhy:

}

public void method3 () {
Svstemioubtiprinbin(onow 3) ;

}
}

public class Rain extends Snow {
publrc vord methodl ()
SWs bemvoutaprrmbln: R e maiivg::
}

public void method2 () {
Svstemiountaprintln (Rapma D
}

27

——

"Polymorphism mystery”

public class Sleet extends Snow {
public void method2 () {
svistemyoubypran blrpeoei iy
super.method2 () ;
method3 () ;

}

babltewwarchnerhod S
A AR N G A S AN PN A AN o e e S i
}

}

public class Fog extends Sleet ({
publrc vord methodl ()
Syietemaeon i rrn bl s

}

public void method3 () {
Sy sbemyoubtiyprinbEn (B Rog 3%

}

28

Technique 1: diagram

* Diagram the classes from top (superclass) to bottom.

Snow
method?2
method3
+
Rain Sleet
method1 method?2
method?2 method3
(method3) T
Fog
method1
(method2)
method3

Technique 2: table

method Snow Rain Sleet Fog
methodl Rain:l Pogil
methioa2 e now 2 R 2 Sleet 2 Sleet 2
SN OW: 2 STIOW 2
method3 () method3 ()
method3 | Snow 3 Snow 3 Sleet 3 Bot)

Italic - inherited behavior
Bold - dynamic method call

30

—

Mystery problem, no cast

Snow var3 = new Rain /() ;
Varr e aiaivi s // What's the output?

» If the problem does not have any casting, then:

Look at the variable's type.
If that type does not have the method: ERROR.

Execute the method, behaving like the object's type.
(The variable type no longer matters in this step.)

G4

J—
Example 1

* What is the output of the following call?

variable
Snow varl = new Sleet () ; Snow
Vs b s b V= i al o e W A
method?2
method3
e Answer: s .
object
Rai Sleet
Sleet 2 amn i
SHOW 2 method1 method?2
Sleet 3 method?2 method3
(method3) T
Fog
method1
(method2)
method3

B

e

Example 2

* What is the output of the following call?

Snow varZ2 = new Rain () ;

Nl V= a0 e W A

e Answer:

ERROR
(because snow does not
have a methodl)

variable
Snow
method?2
method3
. >
object
Rain Sleet
method1 method?2
method?2 method3
(method3) T
Fog
method1
(method2)

method3

53

—

Mystery problem with cast

Snow var?2 = new Rain () ;
((Sleet) var2) .method2 () ; // What's the output?

» If the problem does have a type cast, then:

Look at the cast type.
If that type does not have the method: ERROR.

Make sure the object's type is the cast type or is a subclass of the cast
type. If not: ERROR. (No sideways casts!)

Execute the method, behaving like the object's type.
(The variable / cast types no longer matter in this step.)

34

e

Example 3

* What is the output of the following call?

Snow var?

(ERaI) ar2yvmethodilig

e Answer:

Rain 1

variable
= new Rain(); Snow
method?2
method3
cast 3
object
Rain Sleet
method1 method?2
method?2 method3
(method3) T
Fog
method1
(method2)

method3

5

J—
Example 4

* What is the output of the following call?

variable
Snow varZ2 = new Rain () ; Snow
((Sleet) var?2) .method2 () ;
method2
method3
e Answer: : 4
object cast
Rain Sleet
ERROR
(because the object's method1 method2
type, Rain, cannot method2 method3
be cast into Sleet) (methoa3) T
Fog
method1
(method2)
method3

36

